0.4. Выполните указанные действия и приведите многочлен к стан- дартному виду:
1) (4a^2b — Заb^2) + (-а^2b + 2ab^2);
2) (у^2– Зу) + (3y – 2у^2) - (4 – 2у^2);
3) 2x^2 – x(2x – 5y) - y(2х - у);
4) 7m(3m+ 2n) - Зm(7n – 2m);
5) (5р – 4q) (2р – 2q);
6) (а^2 – 2ab)(a^2 — 5ab + 3b^2).
9x²- 4y² = 5.
(3х)²-(2у)²=5
(3х-2у) *(3х+2у) = 5
5 - число простое.
Произведение его множителей имеет 4 варианта из целых чисел:
5 = 1 · 5
5 = 5 · 1
5 = (-1) · (-5)
5 = (-5) · (-1)
Рассмотрим каждый из вариантов.
1 вариант.
(3х-2у) *(3х+2у) = 1*5
Получаем систему:
{3х-2у = 1
{3х+2у = 5
Сложим эти уравнения и получим:
3х-2у+3х+2у=1+5
6х = 6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у =5
2у=5-3
у=2 : 2
у=1
Получаем первую пару целых чисел:
х=1
у=1
2 вариант
(3х-2у) *(3х+2у) = 5*1
Получаем систему:
{3х-2у = 5
{3х+2у = 1
Сложим эти уравнения и получим:
6х=6
х=1
Подставим х=1 во второе уравнение 3х+2у=5 и найдём у.
3*1+2у=1
2у=1-3
2у = -2
Получаем вторую пару целых чисел:
х=1
у=-1
3 вариант
(3х-2у) *(3х+2у) = (-1) · (-5)
Получим систему:
{3х-2у = -1
{3х+2у = -5
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1) +2у = -5
2у=-5+3
2у=-2
у=-1
Получаем третью пару целых чисел:
х = -1
у = -1
4 вариант
(3х-2у) *(3х+2у) = (-5) · (-1)
Получим систему:
{3х-2у = -5
{3х+2у = -1
Сложим эти уравнения и получим:
6х = -6
х=-1
Подставим х= -1 во второе уравнение 3х+2у=5 и найдём у.
3*(-1)+2у = -1
2у=3-1
у=1
Получаем четвёртую пару целых чисел:
х = -1
у = 1
ответ: (1; 1), (1; -1); (-1; -1); (-1; 1)
Действительно, первое равенство (x-2)^2+8x=(x-2)^2 может выполняться лишь при х=0. Действительно, убирая из левой и правой частей одинаковый член (x-2)^2, получаем: 8х = 0, отсюда х=0.
Второе уравнение (x-2)^2=(x-1)(x-1) не может выполняться при любом значении х. Действительно, записав в виде квадратов, получаем:
(x-2)^2=(x-1)^2. Показатели степени равны. Значит, основания тоже должны быть равны. Но они не равны при любом значении х: х-2 ≠ х-1