1. для заданной функции f(x)=(x-1)^2-4(x-1)+3: a) определить потолок параболы; b) найти ось симметрии параболы; c) найти точку пересечения с осью Ох; d) найти точку пересечения с осью Оу; e) построить график функции.
При умножении степеней с одинаковыми основаниями показатели складываем, при делении степеней с одинаковыми основания показатели вычитаем: Выполните действия: а) а⁹ × а¹³=a⁹⁺¹³=a²²; б) а¹⁸ : а⁶=a³; При возведении степени в степень показатели перемножаются в) (а⁷)⁴=a²⁸; При возведении произведения в степень, возводим в степень каждый множитель г) (2а³)⁵=2⁵a¹⁵. 2. Упростите выражение: а) –7х⁵у³ × 1,5ху=-10,5х⁶у⁴; б) (–3m⁴n¹³)³=-27m¹²n³⁹. 3. Постройте график функции у = х2. С его определите: а) На оси ох находим х=2,5. Через эту проводим прямую, параллельную оси оу до пересечения с графиком функции. Через точку пересечения проводим прямую, параллельную оси ох. На оси оу получаем значение 6,25 : (2,5)²=6,25 б) На оси оу находим у=5. Через эту проводим прямую, параллельную оси ох до пересечения с графиком функции. Получим две точки пересечения с графиком. Через эти точки проводим прямые, параллельную оси оу. На оси ох получаем два значения ≈-2,2 и ≈2,2 : √5≈2,2 или √5≈-2,2
Напомним, что любая функция принимает наименьшее или наибольшее значение тогда, когда ее производная равна нулю или не существует. Найдем производную y´(x) и приравняем ее к нулю. y´(x)=(8x2-x3+13)´=(8x2)´- (x3)´ + 13´ = 16x - 3x2 - существует при любых x. 16x-3x2=0 x(16-3x)=0 x1=0, x2=16/3=5 целых 1/3 - в этих точках функция y(x) принимает наименьшее или наибольшее значение. Когда производная меньше нуля, функция убывает. Когда производная больше нуля, функция возрастает. Посмотрим на знаки производной. При x<0 y´(x)<0. При 00. Значит, до x=0 функция y(x) убывает, а после x=0 - возрастает. Поэтому в точке x=0 функция будет принимать наименьшее значение на отрезке [-5; 5]. Найдем это наименьшее значение, подставив в y(x) вместо x ноль. Получаем: y(0) = 8*02 - 03+ 13=13, это и будет ответ.
Выполните действия:
а) а⁹ × а¹³=a⁹⁺¹³=a²²;
б) а¹⁸ : а⁶=a³;
При возведении степени в степень показатели перемножаются
в) (а⁷)⁴=a²⁸;
При возведении произведения в степень, возводим в степень каждый множитель
г) (2а³)⁵=2⁵a¹⁵.
2. Упростите выражение:
а) –7х⁵у³ × 1,5ху=-10,5х⁶у⁴;
б) (–3m⁴n¹³)³=-27m¹²n³⁹.
3. Постройте график функции у = х2.
С его определите:
а) На оси ох находим х=2,5. Через эту проводим прямую, параллельную оси оу до пересечения с графиком функции. Через точку пересечения проводим прямую, параллельную оси ох. На оси оу получаем значение 6,25 : (2,5)²=6,25
б) На оси оу находим у=5. Через эту проводим прямую, параллельную оси ох до пересечения с графиком функции. Получим две точки пересечения с графиком. Через эти точки проводим прямые, параллельную оси оу. На оси ох получаем два значения ≈-2,2 и ≈2,2 :
√5≈2,2 или √5≈-2,2