В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с зелёным чаем в 7 раз меньше, чем пакетиков с чёрным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
Решение.
Пусть в ящике x пакетиков с зеленым чаем, тогда с черным чаем пакетиков 7x (так как их в 7 раз больше). Всего в ящике находится
x+7x = 8x пакетиков с чаем.
Обозначим через событие A «из ящика был вынут пакетик с черным чаем». Число благоприятных исходов для события A равно m=7x. Всего исходов n=8x. Получаем значение искомой вероятности:
В решении.
Объяснение:
Первое задание.
Координаты точек пересечения графиком осей координат:
(-2; 0) и (0; -4)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -2 и у=0.
Получим первое уравнение системы:
k * (-2) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= -4.
Получим второе уравнение системы:
k * 0 + b = -4
Решить систему:
k * (-2) + b = 0;
k * 0 + b = -4
Из второго уравнения b = -4, подставить в первое и вычислить k:
-2k - 4 = 0
-2k = 4
k = 4/-2
k = -2.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = -2х - 4.
Второе задание.
Координаты точек пересечения графиком осей координат:
(-4; 0) и (0; 2)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -4 и у=0.
Получим первое уравнение системы:
k * (-4) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= 2.
Получим второе уравнение системы:
k * 0 + b = 2
Решить систему:
k * (-4) + b = 0;
k * 0 + b = 2
Из второго уравнения b = 2, подставить в первое и вычислить k:
-4k + 2 = 0
-4k = -2
k = -2/-4
k = 0,5.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = 0,5х + 2.
0.875
Объяснение:
В коробке вперемешку лежат чайные пакетики с чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с зелёным чаем в 7 раз меньше, чем пакетиков с чёрным. Найдите вероятность того, что случайно выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.
Решение.
Пусть в ящике x пакетиков с зеленым чаем, тогда с черным чаем пакетиков 7x (так как их в 7 раз больше). Всего в ящике находится
x+7x = 8x пакетиков с чаем.
Обозначим через событие A «из ящика был вынут пакетик с черным чаем». Число благоприятных исходов для события A равно m=7x. Всего исходов n=8x. Получаем значение искомой вероятности: