1. Найдите координаты вершины параболы для функций: а) у=-2(х-11)2-8; б) у=12 х2-2х-3.
2.Найдите точки пересечения графика функции у=х2-13х+40с осями координат.
3. Постройте график функции у= -х2+2х+8 по алгоритму (1-6). Используя график, запишите в виде числового промежутка:
А) значения х, при которых у возрастает; б) значения х, при которых у<0.
y'(x)=4*x^3-4=4(x^3-1)=4(x-1)(x^2+x+1)
Нули: x=1
Рисуем прямую 0x:
y'<0 y'>0
1
убывает возрастает
Значит, x=1 - точка минимума.
Отвечаем на вопросы:
1) Минимум на отрезке [0;2]
Так как x=1 попадает на отрезок, то в этой точке и содержится минимум. y(1)=1^4-4*1+5=2 - минимум на отрезке [0;2]
2) Максимум на отрезке [0;2]
Здесь известно, что при x∈[0;1] функция убывает, а при x∈[1;2] функция возрастает. Это значит, что для нахождения максимума на отрезке нужно сравнить граничные значения и выбрать среди них наибольшее.
y(0)=0^4-4*0+5=5
y(2)=2^4-4*2+5=13
max(y(0), y(2))=13 - максимум на отрезке [0;2]
Проверим аналитически:
уравнение прямой у=kх+b, где (х; у) - точки, через которые она проходит.
составим ур-ие прямой, проходящей через точки А и В
Система:
{-6=2k+b {-6=2k+3-5k <=> {-9=-3k <=> {k=3
{3=5k+b <=> {b=3-5k {b=3-5k {b=-12
Уравнение прямой у=3х-12
Проверим принадлежит ли ей точка С,
1=3*1-12,
1=3-12
1=-9 неверно точка С не принадлежит прямой у=3х-12, а значит,
Данные три точки не лежат на одной прямой