1. Найдите значение дроби m^2-4mn+4n^2/m-2,если m=20; n=11 2. При каких значениях переменной имеет смысл виражение x+2/x^2+4 ? 3. Для какого выражения,допустимыми переменной являются все ее значения,кроме t=0;t=1. (1) t-1/t (2) 1/t + 2/t+1 (3) 2+t/ t-1 (4) 2t/ 7-/t. 4. При всех допустимых значениях переменной значение дроби 1/x^2. 5.известно,что 8a +4b =12 найдите значение выражения 4a^2+4ab +b^2/2a + b 6. При каких значениях переменной х,значение дроби 9+x^4/8x-1-16x^2
x=8,y=2,z=2
Объяснение:
ну тут даже хз что сказать то
составим векторы
AM = {x,y-4,z-2}
BM = {x-4,y-3,z-2}
|AM|/|BM|=2
решаем это
sqrt(x^2+(y-4)^2+(z-2)^2)/sqrt((x-4)^2+(y-3)^2+(z-2)^2) = 2
отсюда имеем
x=4,y=4,z=0
x=4,y=4,z=4
x=6,y=0,z=2
x=8,y=2,z=2
составим уравнение прямой проходящей через две точки и сделаем это в параметрическом виде , получаем
x=4t
y=-t+4
z=2
тк z=2 то подходят нам координаты x=6,y=0,z=2 и x=8,y=2,z=2
подставим в систему с параметрами по очереди наши координаты
в результате получаем что x=8,y=2,z=2 -подходит
имеем точку M(8;2;2)
все это можно решить проще и я хз правильно ли решил это но все же прверь мб подходит
Объяснение:
а) область определения функции
левая граница между -2 и -1 приближенно -1,2
[-1,2;7]
б) область значений функции
[-2;6]
в) f(3)=-1
г) значения x, при которых f(x)=1
приближенно -0,9 ; 1.2
д) координаты точек пересечения с осью x
(-1;0)
приближенно (1,6 ; 0)
приближенно (4,5 ; 0)
е) значение аргумента, при которых значение функции отрицательны
приближенно (-1,2 ; 1)
приближенно (1,6;4,5)
ж) значение аргумента, при котором значение функции положительны.
приближенно (-1; 1,6)
приближенно (4,5 ; 7)