В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kotBarsik14
kotBarsik14
27.02.2023 08:20 •  Алгебра

1.найти область определения и множество значений функции
y=2sinx cosx
y=2ctg(x+п/2)
2.исследовать функцию на четность или нечетность
y=(2x²+ cos x)*cosx
y= x*ctgx
3.доказать что функция y=sin2x периодическая и найти ее наименьший положительный период
4.найти все принадлежащие отрезку -2,5п; 0,5п корни уравнения sin x=-1/2
5.найти все принадлежащие отрезку -2п; п решения неравенства tgx больше, либо равное 1
любое

Показать ответ
Ответ:
bossmakswell
bossmakswell
11.07.2022 17:18

Раскладывать выражения на множители будем, используя группировки:

1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).

По формуле а2 – b2 = (a – b)(а + b):

(x – 3y) + (x – 3y)(x + 3y).

Выносим выражение (x – 3y) за скобку:

(x – 3y)(1 + x + 3y).

2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.

Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:

(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).

3). Выносим b3 за скобку и группируем:

ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].

Выносим общий множитель (a – 1) за скобку:

b3(a – 1)(b2 – 1).

4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).

Выражение в скобке «сворачиваем» как  квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):

1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).

ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).

Объяснение:

0,0(0 оценок)
Ответ:
JlunaJlove
JlunaJlove
19.06.2021 23:27

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются:

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются.

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc… ) n = a n · b n · c n …

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

( a m ) n = a m n .

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота