В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Мираж005
Мираж005
25.03.2022 03:42 •  Алгебра

1) Не виконуючи побудови, знайдіть координати точок перетину графіків функцій y = 2,8x - 5 i y = - 1,2x + 7 *

2)Не виконуючи побудови графіка функції у = - 3,2х + 4, визначте, через які з даних точок проходить цей графік (обрати всі варіанти, які підходять): *
А(2; - 2,4)
В(- 3; 5,6)
С(1; - 0,8)
К(0,5; 1,4)

3)Знайдіть значення k, при якому графік функції y = kx + 7 проходить через точку М(2; - 1) *

Показать ответ
Ответ:
Zaika6432
Zaika6432
08.01.2023 20:24

х=³√4

Объяснение:

[x] - целая часть числа х,

{х} - дробная часть числа х,

х = [х] + {х}, при этом 0 ≤ {х} < 1 →

[х] = х - {х}

x³-[x]=3 →

х³-(х-{х})=3

х³-х+{х}=3

{х}= 3+х-х³ →

0 ≤ 3+х-х³ < 1 | -3

-3 ≤ х-х³ < -2 | *(-1)

2 < х³-х ≤ 3

Пусть f(x)=x³-x

f'(x)=(x³-x)'=3x²-1

f'(x)=0 при 3х²-1=0

3х²=1, х²=1/3, х= ±1/(√3)

f'(x). +. -. +

оо>

f(x) ↑ -1/√3 ↓ 1/√3. ↑ х

Исследуем функцию на промежутке от (-∞;1/√3):

f(max) = f(-1/√3) = x³-x = x(x²-1) = -1/√3 * ((-1/√3)² -1) = -1/√3 * (1/3 - 1) = -1/√3 * (-2/3) = 2/3√3 < 2 →

на промежутке от (-∞; 1/√3) функция f(x)=x³-x не имеет значений, подходящих неравенству 2 < f(x) ≤ 3

Исследуем функцию на промежутке от [1/√3; +∞):

рассмотрим ближайшее целое значение в ближайшей точке = 1:

f(1) = 1³-1 = 0

в точке 2: f(2)=2³-2=8-2=6 →

в промежутке от 1 до 2 функция изменяется от 0 до 6 и содержится нужный промежуток (когда функция изменяется от 2 до 3) →

1 < х < 2 → [х] = 1

Подствляем в исходное уравнение:

х³-1=3

х³=4

х=³√4

0,0(0 оценок)
Ответ:
aylinlove
aylinlove
10.11.2022 01:10

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота