1)определите имеет ли корни уравнение и если имеет то сколько 6x^2-4x-2=0 2)решите уравнение(2-5) 18-2x^2=0 5x^2-3=0 5x^2-8x+3=0 x^2+9x-10=0 x^2-x дробь 6=2 3)произведение двух натуральных чисел равно 273 найдите эти числа если одно из них на 8 больше другого 4) x^3+4^-21x=0
D=b²-4ac=16-4*6*(-2)=16+48=64
D>0 значит корня 2
x1=(-b+√D)/2a=(4+8)/12=1
x2=(-b-√D)/2a=(4-8)/12=-1/3
2) 18-2x²=0
2x²=18
x²=9
x=±3
5x²-3=0
5x²=3
x²=3/5
x=±√3/5
5x²-8x+3=0
D=64-4*5*3=64-60=4
x1=1
x2=3/5
x²+9x-10=0
D=81-4*(-10)=121
x1=1
x2=-10
(x²-x)/6=2
x²-x=12
x²-x-12=0
D=1-4*(-12)=49
x1= 4
x2= -3
3)Пусть x-наименьшее число, тогда второе число x+8, по условию задачи первое число на второе равно 273,то есть
x*(x+8)=273
x²+8x-273=0
D=64-4*(-273)=1156 (√1156=34)
x1=13
x2=-21
То есть отсюда получаем 2 случая
Если первое число 13, то второе 21
Если первое число - 21,то второе - 13
4)я не поняла условие, если напишете понятнее, я решу