1. При возведении в степень (b+11)2 получается: (с решением)
2. Выполни умножение: (3x^3−7y^2)⋅(3x^3+7y^2) \знак ^ означает возведение в степень\
(c полным решением)
3. Представь квадрат двучлена в виде многочлена:
(0,9t+1,6s)^2
(с полным решением)
4. Разложить на множители разность квадратов a^8−b^20
(с полным решением)
5. Разложи на множители (x+3y)^2−(3x+y)^2
(с полным решением)
6. Представь трёхчлен z^2+14⋅z+49 в виде квадрата двучлена
7. Преобразуй трёхчлен 8⋅x⋅y+y^2+16⋅x^2 в квадрат двучлена
8. Представь в виде произведения
p12g24−1
9. Найди значение выражения: (5c−8d)⋅(5c+8d)−25c2,
если c=2 и d=0,01
10. Преобразуй в многочлен −6(0,1p−t)^2
11. (3x−4)^2−(x−20)^2=0 - реши уравнение
12. Найти корни уравнения: c^2+18c+56=0
13. Решить уравнение: c^2−10c−11=0
все с полным решением
В решении.
Объяснение:
Разложить квадратный трёхчлен на множители:
1) а² - 12а + 24 = 0
Приравнять к нулю и решить как квадратное уравнение.
D=b²-4ac =144 - 96 = 48 √D=48 = √16*3 = 4√3;
а₁=(-b-√D)/2a
а₁=(12-4√3)/2
а₁=6 - 2√3;
а₂=(-b+√D)/2a
а₂=(12+4√3)/2
а₂=6 + 2√3.
Разложение:
а² - 12а + 24 = (а - (6 - 2√3))(а - (6 + 2√3)) = (а - 6 + 2√3)*(а - 6 - 2√3).
2) -b² + 16b - 15 = 0
Приравнять к нулю и решить как квадратное уравнение.
-b² + 16b - 15 = 0/-1
b² - 16b + 15 = 0
D=b²-4ac =256 - 60 = 196 √D=14
b₁=(-b-√D)/2a
b₁=(16-14)/2
b₁=2/2
b₁=1;
b₂=(-b+√D)/2a
b₂=(16+14)/2
b₂=30/2
b₂=15.
Разложение:
-b² + 16b - 15 = -(b - 1)(b - 15).
3) -z² - 8z + 9 = 0
Приравнять к нулю и решить как квадратное уравнение.
-z² - 8z + 9 = 0/-1
z² + 8z - 9 = 0
D=b²-4ac =64 + 36 = 100 √D=10
z₁=(-b-√D)/2a
z₁=(-8-10)/2
z₁= -18/2
z₁= -9;
z₂=(-b+√D)/2a
z₂=(-8+10)/2
z₂=2/2
z₂=1.
Разложение:
-z² - 8z + 9 = -(z + 9)*(z - 1).
у = x + 2
Объяснение:
Вариант 1.
Найди по графику значение у при х равным 0:
При х = 0, у = 2
подставим в уравнение прямой:
у = kx + b:
2 = b
Найдем х, при котором у = 0:
При х = -2, у = 0
поставим в уравнение прямой:
0 = -2k + b.
Решая совместно, получим:
0 = -2k + 2
k = 1
b = 2
ответ: у = х + 2
Вариант 2.
Как мы видим, на графике изображена прямая.
Уравнение прямой в общем виде:
у = kx + b,
где: k = tgα, тут α - угол наклона прямой к оси Ох. Найдем его:
Для начала найдем точку пересечения с осью Ох: х0 = -2. Затем на графике возьмем удобную точку х1, такую, что х1>х0. Найдем значение у в точке х1: у(х1). Тогда:
k = tgα = y(x1)/(x1-x0)
В нашем случае удобно взять: х0 = -2; х1 = 0.
Тогда: y(x1) = 2
k = tgα = 2/(0-(-2)) = 2/2 = 1
Имеем:
у = х + b => b = y - x
Возьмем произвольно значение х, найдем по графику для него соответствуещее значение у и подставим в указаное уравнение:
при х = 0, у = 2:
b = 2 - 0 = 2
у = х + 2