В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.
Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.
Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах
В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.
Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.
Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах
Объяснение:
(-1,5;2,5) (2;-1) (-2;1) (1,5;-2,5)
Объяснение:
{x²+2xy+y²=1 {(x+y)²=1 {x+y=-1 {x+y=1
{x²-xy=6 ⇔ {x²-xy=6 ⇔ {x²-xy=6 ⇔ {x²-xy=6
{y=-1-x { y=1-x
{x²-x(-1-x)=6 {x²-x(1-x)=6
x²+x+x²-6=0 x²-x+x²-6=0
2x²+x-6=0 2x²-x-6=0
D=1²-4·2·(-6)=49 D=(-1)²-4·2·(-6)=49
x₁=(-1-7)/4=-2 y₁=-1-(-2)=1 x₁=(1-7)/4=-1,5 y₁=1-(-1,5)=2,5
x₂=(-1+7)/4=1,5 y₂=-1-1,5=-2,5 x₂=(1+7)/4=2 y₂=1-2=-1