1.Решите неравенство и изобразите множество решений на координатной прямой: 25-х>2-3(х-6) 2х-4(х-8)≤3х+2 2.При каких значениях y значение выражения 15 + y меньше значений выражения 16-y? 3.Решите систему неравенств: 1) 6-3х>0, 2)3х-2≥х+1, 5х-3>0. 4-2х≤х
1) Показательная функция с основанием 6>1 монотонно возрастает. Большему значению функции соответствует большее значение аргумента: х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0 ---------------(-3)--------------(1)---------------------- \\\\\\\\\\\\\\\\\\\\\ //////////////////// ответ. (-∞;-3)U(1;+∞) 2) Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: x-2=1/2 ⇒x=2,5 ответ. 2,5 3) 25=5² Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: х²-2х-1=2 х²-2х-3=0 (х+1)(х-2)=0 х=-1 или х=2 ответ. -1; 2 4) Замена переменной t²-5t+4=0 D=25-16=9 t=1 или t=4 ⇒ x=0 ⇒ x=2 ответ. 0; 2 5)Замена переменной t²-6t+5=0 D=36-20=16 t=1 или t=5 ⇒ x=0 ⇒ x=1 ответ. 0; 1
Максимум в точке х = (для записи )
Минимум в точке х = -1
Объяснение:
f(x)=2x^3+7x^2+8x+4
Область определения:
Х∈R
f(x)=2x^3+7x^2+8x+4, Х∈R
Определим производную f:
f(x) = 2x^3+7x^2+8x+4
f'(x) = d/dx (2x^3+7x^2+8x+4)
f'(x) = d/dx(2x^3) + d/dx(7x^2) + d/dx(8x) + d/dx(4)
f'(x) = 2*3x^2 + 7*2x+8+0
f'(x) = 6x^2+14x+8
f'(x) = 6x^2+14x+8, Х∈R
Представим f'(x) = 0
0=6x^2+14x+8
Решим ур-е относительно Х
6x^2+14x+8=0 | :2
3x^2+7x+4=0
D=b2-4ac = 7^2-4*3*4 = 1
x1,2= -b+-D/2a = -7+-1/2*3
x1= - 4/3
х2= -1
X∈(-∞;- 4/3)
X∈(- 4/3;-1)
max: - 4/3
min: -1
х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0
---------------(-3)--------------(1)----------------------
\\\\\\\\\\\\\\\\\\\\\ ////////////////////
ответ. (-∞;-3)U(1;+∞)
2)
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
x-2=1/2 ⇒x=2,5
ответ. 2,5
3) 25=5²
Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны:
х²-2х-1=2
х²-2х-3=0
(х+1)(х-2)=0
х=-1 или х=2
ответ. -1; 2
4) Замена переменной
t²-5t+4=0
D=25-16=9
t=1 или t=4
⇒ x=0
⇒ x=2
ответ. 0; 2
5)Замена переменной
t²-6t+5=0
D=36-20=16
t=1 или t=5
⇒ x=0
⇒ x=1
ответ. 0; 1