1. Решите неравенство, изобразите множество его решений на
координатной прямой, запиши ответ в виде числового промежутка:
a) 4x > - 5,6;
б) 1/4х - 2 > х - 3;
в) 4(2 + 2x)+(3(4 - 4x)>0.
2. При каких значениях переменной квадрат двучлена бр + 1 больше произведения выражений (9р - 1) и (4р +5)? Укажите наибольшее целое число, удовлетворяющее этому условию.
Дайте ответ на каждое задание полностью! Заранее благодарю!
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.
1
a)cos 260° * sin 190°
cos 260° < 0, (260° - угол 3 четверти, где косинус отрицателен)
sin 190° < 0(190° - угол 3 четверти, где синус отрицателен).
Поэтому это выражение больше 0.
б)cos 350° * tg(-100°)
cos 350° > 0(350° - угол 4 четверти, где косинус положителен).
tg(-100°) = -tg 100° > 0(100° - угол 2 четверти, где тангенс отрицателен, да ещё минус)
Поэтому, значение выражения больше 0.
2
а)sin 230° < 0, так как 230° - угол 3 четверти, где синус отрицателен.
б)cos 170° < 0, так как 170° - угол 2 четверти, где косинус отрицателен
в)tg 330° < 0, так как 330° - угол 4 четверти, где тангенс отрицателен
г)ctg(-220°) = -ctg 220° < 0, так как само выражение ctg 220° > 0(угол относится к 3 четверти, где котангенс положителен), да ещё минус прибавили.
д)В знаменателе у нас стоит постоянное число 8, так что знак выражения будет зависеть только от числителя. Достаточно проверить лишь одно из выражений, например, cos 3:
cos(3 * 57) = cos 171° < 0, (171 - угол 2 четверти, где косинус отрицателен). Поэтому всё выражение заведомом меньше нуля