D = 1-8=-7 корень из дискриминанта не извлекается.
ответ: 2, -3
3. 4х2/(х-2)-4х/(х+3)=(9х+2)/(х2+х-6)
решаем квадратное уравнение х2+х-6 и найдя х1=2, х2=-3 раскладываем кв.ур. по формуле, получаем:
4х2/(х-2)-4х/(х+3)=(9х+2)/(х-2)(х+3) умножаем все части уравнения на (х-2)(х+3)
4х3+12х2-4х2+8х=9х+2
переносим все из правой части в левую и упрощаем:
4х3+8х2-х-2=0
х=-2 -32+32+2-2=0
4х3+8х2-х-2:х+2
- ответ:4х2-1
4х3+8х2
-х-2
-
-х-2
0
4х2-1=0 мы можем разложить левую часть уравнения формуле разности квадрата:
(2х-1)(2х+1)=0
По свойству: если произведение 2-х или более множителей равно нулю, то хотя бы одно из этих множителей равно нулю. Используя это свойство, приравниваем каждую из скобок к нулю:
1. х4+х3+х2-х-2:х3+х-2
- ответ: х+1
х4+х2-2х
х3+х-2
-
х3+х-2
0
2. 2х4+3х3-10х2-5х-6=0
х=2 32+24-40-10-6=0
2х4+3х3-10х2-5х-6:х-2
- ответ: 2х3+7х2+4х+3
2х4-4х3
7х3-10х2-5х-6
-
7х3-14х2
4х2-5х-6
-
4х2-8х
3х-6
-
3х-6
0
2х3+7х2+4х+3=0
х=-3
2х3+7х2+4х+3:х+3
- ответ: 2х2+х+1
2х3+6х2
х2+4х+3
-
х2+3х
х+3
-
х+3
0
2х2+х+1
D = 1-8=-7 корень из дискриминанта не извлекается.
ответ: 2, -3
3. 4х2/(х-2)-4х/(х+3)=(9х+2)/(х2+х-6)
решаем квадратное уравнение х2+х-6 и найдя х1=2, х2=-3 раскладываем кв.ур. по формуле, получаем:
4х2/(х-2)-4х/(х+3)=(9х+2)/(х-2)(х+3) умножаем все части уравнения на (х-2)(х+3)
4х3+12х2-4х2+8х=9х+2
переносим все из правой части в левую и упрощаем:
4х3+8х2-х-2=0
х=-2 -32+32+2-2=0
4х3+8х2-х-2:х+2
- ответ:4х2-1
4х3+8х2
-х-2
-
-х-2
0
4х2-1=0 мы можем разложить левую часть уравнения формуле разности квадрата:
(2х-1)(2х+1)=0
По свойству: если произведение 2-х или более множителей равно нулю, то хотя бы одно из этих множителей равно нулю. Используя это свойство, приравниваем каждую из скобок к нулю:
2х-1=0 или 2х+1=0
2х=1 2х=-1
х=0,5 х=-0,5
ответ: х1=-2, х2=0,5, х3=-0,5
4. 2х2-у=2, 2х2-х-1=0 < все это системами
Х-у=1. y=х-1
решаем кв. ур.:
2х2-х-1=0
D=1+8=9 корень из D = 3
х1= (1-3)/4 или х2=(1+3)/4
х1=-0,5 х2=1
y1=-0,5-1=-1,5 y2=1-1=0
ответ:(-0,5;-1,5);(1;0).
5. (ху)/2=15 ху=30 < системами
х+у=11 х+у=11
х1=5 или х2=6
у1=6 х1=5
ответ:(5;6);(6;5)
Общий вид функции
Верное свойство данной функции 3):
Объяснение:
Я так понимаю, имелось в виду следующее:
Дана функция
Общий вид данной функции:
Потому что показатель степени у данной функции равен 8, т е. четный:
Выбери верное свойство данной функции:
1.D(f)=(−∞;0] - Неверно.
Данная функция определена как для положительных, так и для отрицательных значений аргумента
2. Ф-ия нечётная - НЕверно
Проверим функцию на нечетность. Нечетной называется функция, если f(-x) = -f(x)
В нашем случае
3. D(f)=(−∞;+∞) - ВЕРНО!
ДАННАЯ ФУНКЦИЯ ОПРЕДЕЛЕНА ДЛЯ ЛЮБЫХ ДЕЙСТВИТЕЛЬНЫХ ЗНАЧЕНИЙ Х: