1)у двоцифровому числі одиниць на 5 більше ніж десятків,якщо до цього числа додати інше 2цифровк число що записане тими самими цифрами ти отримаємо 121.знайди це число
2)доведи,що сума 2йифрового числа та числа записаного тими самими цифрами але у зворотному порядку,ділиться на 11
15
b1/(1+q)=16/3;
b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)