В решении.
Объяснение:
1) Сократить дробь:
а) 39х³у/26х²у²=
сократить (разделить) 39 и 26 на 13, х³ и х² на х², у² и у на у:
=3х/2у;
б) 5у/(у²-2у) = 5у/у(у-2) =
сократить (разделить) у и у на у:
= 5/(у-2);
в) (3а-3b)/(a²-b²)=
в числителе вынести 3 за скобки, в знаменателе разность квадратов, развернуть:
=3(a-b)/(a-b)(a+b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=3/(a+b).
2) Представить в виде дроби:
а) (3-2а)/2а - (1-а²)/а²=
общий знаменатель 2а², надписываем над числителями дополнительные множители:
= [а*(3-2а) - 2*(1-а²)] / 2a²=
=(3а-2а²-2+2а²) / 2a²=
=(3а-2)/2a²;
б) 1/(3х+у) - 1/(3х-у)=
общий знаменатель (3х+у)(3х-у), надписываем над числителями дополнительные множители:
= [(3х-у)*1 - (3х+у)*1] / (3х+у)(3х-у)=
=(3х-у-3х-у) / (3х+у)(3х-у)=
разность квадратов в знаменателе свернуть:
= -2у/(9х²-у²);
в) (4-3в)/(в²-2в) + 3/(в-2)=
= (4-3в)/в(в-2) + 3/(в-2)=
общий знаменатель в(в-2), надписываем над числителями дополнительные множители:
= [1*(4-3в) + в*3] / в(в-2)=
=(4-3в+3в) / в(в-2)=
= 4/в(в-2).
3) Найти значение выражения:
(х-6у²)/2у + 3у= при х= -8; у=0,1
=(х-6у²+6у²)/2у=
=х/2у=
= -8/0,2=
= -40.
4) Упростить:
2/(х-4) - (х+8)/(х²-16) - 1/х= 16/х(х²-16)
=2/(х-4) - (х+8)/(х-4)(х+4) - 1/х=
общий знаменатель х(х-4)(х+4), надписываем над числителями дополнительные множители:
=[х(х+4)*2 - х(х+8) - (х-4)(х+4)*1] / х(х-4)(х+4)=
=(2х²+8х-х²-8х-х²+16) / х(х-4)(х+4)=
= 16/х(х²-16)
В решении.
Объяснение:
1) Сократить дробь:
а) 39х³у/26х²у²=
сократить (разделить) 39 и 26 на 13, х³ и х² на х², у² и у на у:
=3х/2у;
б) 5у/(у²-2у) = 5у/у(у-2) =
сократить (разделить) у и у на у:
= 5/(у-2);
в) (3а-3b)/(a²-b²)=
в числителе вынести 3 за скобки, в знаменателе разность квадратов, развернуть:
=3(a-b)/(a-b)(a+b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=3/(a+b).
2) Представить в виде дроби:
а) (3-2а)/2а - (1-а²)/а²=
общий знаменатель 2а², надписываем над числителями дополнительные множители:
= [а*(3-2а) - 2*(1-а²)] / 2a²=
=(3а-2а²-2+2а²) / 2a²=
=(3а-2)/2a²;
б) 1/(3х+у) - 1/(3х-у)=
общий знаменатель (3х+у)(3х-у), надписываем над числителями дополнительные множители:
= [(3х-у)*1 - (3х+у)*1] / (3х+у)(3х-у)=
=(3х-у-3х-у) / (3х+у)(3х-у)=
разность квадратов в знаменателе свернуть:
= -2у/(9х²-у²);
в) (4-3в)/(в²-2в) + 3/(в-2)=
= (4-3в)/в(в-2) + 3/(в-2)=
общий знаменатель в(в-2), надписываем над числителями дополнительные множители:
= [1*(4-3в) + в*3] / в(в-2)=
=(4-3в+3в) / в(в-2)=
= 4/в(в-2).
3) Найти значение выражения:
(х-6у²)/2у + 3у= при х= -8; у=0,1
=(х-6у²+6у²)/2у=
=х/2у=
= -8/0,2=
= -40.
4) Упростить:
2/(х-4) - (х+8)/(х²-16) - 1/х= 16/х(х²-16)
=2/(х-4) - (х+8)/(х-4)(х+4) - 1/х=
общий знаменатель х(х-4)(х+4), надписываем над числителями дополнительные множители:
=[х(х+4)*2 - х(х+8) - (х-4)(х+4)*1] / х(х-4)(х+4)=
=(2х²+8х-х²-8х-х²+16) / х(х-4)(х+4)=
разность квадратов в знаменателе свернуть:
= 16/х(х²-16)
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5