В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
olcheymaaaa
olcheymaaaa
01.06.2021 21:31 •  Алгебра

1.В канцелярии народного суда находится 26 дел, среди которых 17 уголовных. Наудачу для проверки документации извлекается 5 дел. Найти вероятность того, что взятые наудачу дела окажутся не уголовными
2.в вазе 5 белых и 4 крассных розы. наудачу берут 3 розы. найти вероятность того что они окажуться красными

Показать ответ
Ответ:
ritikdf345
ritikdf345
19.06.2022 17:42
 Касательная прямая есть производная в точке.
 Пусть точка касания с графиком имеет координаты A(x_{1};y_{1})
 График функций y=3-\frac{x^2}{2} симметричен относительно оси oY.  Пересекающая  ось oY     в   точке f(0)=3 .
Очевидно что координата точки B(x_{2};y_{2})\\
y_{2}3.
Рассмотрим прямоугольный треугольник образованный касательной к графику функций с осями ординат и абсцисс. 
  f'(x)=tga. Так как график  симметричен , то угол образующие касательные 90а , ордината будет являться  биссектрисой . Следовательно треугольник будет прямоугольным и равнобедренным. 
пусть касательная имеет вид y=kx+b
y'=(3-\frac{x^2}{2})'=-x\\
-x=1\\
x=-1 , так как tg45а=1 
Точка касания равна -1 , касательная в этой точке по формуле 
 f(-1)=\frac{5}{2}\\
f'(-1)=1\\\\
 y=\frac{5}{2}+1(x+1)=x+\frac{7}{2}\\

То есть координата B(0;\frac{7}{2})=B(0; \ 3,5)
0,0(0 оценок)
Ответ:
Stiv191001
Stiv191001
23.01.2022 05:26
Найдите все значения параметра а

\displaystyle (x^4+4x^2-10)=(a+3)*x^2

не имеет корней на промежутке [-√5;2)

Преобразуем наше уравнение

\displaystyle x^4+x^2(4-a-3)-10=0

x^4+x^2(1-a)-10=0

введем замену переменной

\displaystyle t=x^2

тогда уравнение примет вид

\displaystyle t^2+t(1-a)-10=0 где t≥0

Для того, чтобы уравнение имело решение, необходимо чтобы D>0
найдем D

\displaystyle D=(1-a)^2+40=1-2a+a^2+40=a^2-2a+41

посмотрим при каких а дискриминант будет больше 0

\displaystyle a^2-2a+41\ \textgreater \ 0


очевидно что при любых а 

найдем корни уравнения

\displaystyle t_1= \frac{-(1-a)+ \sqrt{a^2-2a+41}}{2}

\displaystyle t_2= \frac{-(1-a)- \sqrt{a^2-2a+41}}{2}

так как t≥0
проверим наши корни

\displaystyle a-1- \sqrt{a^2-2a+41}\ \textgreater \ 0

\displaystyle a-1\ \textgreater \ \sqrt{a^2-2a+41}

\displaystyle a^2-2a+1\ \textgreater \ a^2-2a+41

очевидно что этот корень нам не подходит
проверив аналогично убедимся что второй корень нам подходит
т.е. 
\displaystyle t=x^2= \frac{a-1+ \sqrt{a^2-2a+41}}{2}

Теперь найдем корни уравнения

\displaystyle x_1= \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}

\displaystyle x_2=- \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}

так как наш промежуток [-√5;2) то положительный корень при любых а не попадет в этот промежуток.
Достаточно рассмотреть только отрицательный корень

\displaystyle - \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}} \leq-\sqrt{5}
\displaystyle - \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2} }\ \textgreater \ -2

\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2} } \geq\sqrt{5}
\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}\ \textless \ 2

решим эти два неравенства
\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}}\ \textless \ 2

a-1+ \sqrt{a^2-2a+41} \ \textless \ 8

 \sqrt{a^2-2a+41}\ \textless \ 9-a

a^2-2a+41\ \textless \ 81-18a+a^2
\displaystyle a\ \textless \ 2.5

\displaystyle \sqrt{ \frac{a-1+ \sqrt{a^2-2a+41}}{2}} \geq \sqrt{5}

a-1+ \sqrt{a^2-2a+41} \geq 10

 \sqrt{a^2-2a+41} \geq 11-a

a^2-2a+41 \geq 121-22a+a^2

a \geq 4

 ответ (-оо;2.5)∪[4;+oo)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота