1) в прогрессии (bn) b5 =1, b1 =81. найти q 2) сумма бесконечно убывающей прогрессии равна 128. найти знаменатель прогрессии, если её первый член равен 64.
Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Y=-3x²+2x-4 при х=0 y=-4 корней нет поскольку дискриминант = b²-4ac=-44< 0 - парабола лежит под осью х. y'=-6x+2 -6x+2=0 6x=2 x=1/3 x∈(-∞; 1/3) y'> 0 возрастает x∈(1/3; ∞) убывает в точке х=1/3 максимум у=-3*1/9+2/3-4=-3 1/3 область определения r, ни четная ни нечетная. y''=-6 точек перегиба нет, выпукла вверх.
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7