1.Вычислите наиболее рациональным Разложите многочлен на множители:
а) 3²-24
б) а² + 6ab + 2а²b + 6ab² + 9b²
в) х² – 4xy + 4у² +х — 2y
3.
а) У выражение:
(2x — 6)² + (3х – 5) (3х + 5) + 60х.
b)Покажите, что значение выражения
(2x — 6)² + (3x — 5) (3х + 5) + 60х при x
= - 1 равно -12
4. Сумма разности квадратов двух
последовательных натуральных чисел и
разности квадратов следующих двух
последовательных натуральных чисел
равна 18. Найдите эти числа, если
разности квадратов неотрицательны.
В решении.
Объяснение:
Один из корней данного квадратного уравнения равен -3. Найдите коэффициент k и второй корень уравнения x²-5x+k=0.
Уравнение вида: х² + рх + q.
По теореме Виета:
х₁ + х₂ = -р
х₁ * х₂ = q
Согласно теореме система уравнений:
х - 3 = 5
х * (-3) = k
Вычислить значение х в первом уравнении, подставить во второе и вычислить k:
х = 5 + 3
х = 8 (второй корень уравнения).
8 * (-3) = - 24 - значение k.
Уравнение имеет вид:
х² - 5х - 24 = 0
Проверка:
D=b²-4ac = 25 + 96 = 121 √D=11
х₁=(-b-√D)/2a
х₁=(5-11)/2 = -6/2 = -3, верно.
х₂=(-b+√D)/2a
х₂=(5+11)/2 = 16/2 = 8, верно.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1