Нельзя.
Объяснение:
Так как вариантов слишком много, то придется зайти с другой стороны.
Для начала следует вычесть единицу, а потом делть на 3 или 4.
2019 не делится на четыре так как оно не четное. На три делится, так как сумма цифр делится на три - 2+0+1+9=12
Разделив на три получаем число 673 и сразу же вычитаем единицу. Полученное число делится и на три и на четыре, потому придется пробовать все варианты.
672/4=168
168-1=167 (не делится на четыре)
167/3=56
56-1=55 (не делится ни на три ни на четыре)
Попробуем другим путем.
672/3=224
224-1=223 (это простое число)
Нельзя.
Объяснение:
Так как вариантов слишком много, то придется зайти с другой стороны.
Для начала следует вычесть единицу, а потом делть на 3 или 4.
2019 не делится на четыре так как оно не четное. На три делится, так как сумма цифр делится на три - 2+0+1+9=12
Разделив на три получаем число 673 и сразу же вычитаем единицу. Полученное число делится и на три и на четыре, потому придется пробовать все варианты.
672/4=168
168-1=167 (не делится на четыре)
167/3=56
56-1=55 (не делится ни на три ни на четыре)
Попробуем другим путем.
672/3=224
224-1=223 (это простое число)
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума