Определим, какой цифрой должно оканчиваться число:
1. Оно должно делиться на 6: ⇒
должно быть, в первую очередь, чётным.
2. Оно должно делиться на 2. ⇒ должно быть чётным.
3. Оно должно делиться на 15. ⇒ должно делиться на 5 и 3,
то есть, в первую очередь, оканчиваться на 5 и на 0.
Таким образом, последняя цифра этого числа - 0.
Рассмотрим число 2025***0. Это число должно делиться на 3. ⇒
По признаку делимости на 3 - сумма цифр данного числа должна делиться на 3. 2025: 2+0+2+5=9 - делится на 3. ⇒
Сумма цифр *** должна делится на 3, а количество чисел *** будет количеством которыми можно расставить цифры от 0 до 9 вместо *** в выражении 2025∗∗∗0.
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).
Объяснение:
Определим, какой цифрой должно оканчиваться число:
1. Оно должно делиться на 6: ⇒
должно быть, в первую очередь, чётным.
2. Оно должно делиться на 2. ⇒ должно быть чётным.
3. Оно должно делиться на 15. ⇒ должно делиться на 5 и 3,
то есть, в первую очередь, оканчиваться на 5 и на 0.
Таким образом, последняя цифра этого числа - 0.
Рассмотрим число 2025***0. Это число должно делиться на 3. ⇒
По признаку делимости на 3 - сумма цифр данного числа должна делиться на 3. 2025: 2+0+2+5=9 - делится на 3. ⇒
Сумма цифр *** должна делится на 3, а количество чисел *** будет количеством которыми можно расставить цифры от 0 до 9 вместо *** в выражении 2025∗∗∗0.
Воспользуемся свойством арифметической прогрессии:
а₁=000 d=3 an=999 n=?
an=a₁+(n-1)*d
0+(n-1)*3=999
3n-3=999
3n=1002 |÷3
n=334. ⇒
ответ
В решении.
Объяснение:
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).