В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
QuAtTro271
QuAtTro271
11.06.2022 11:37 •  Алгебра

1.замените дробь степенью с целым отрицательным показателем
а)1/2 в степени 5
б)1/10
в)1/x в степени 6
г)1/a
д)1/23 в стенени 6
2. вычислите.
a)3 в степени-2
б) (-5) в степени -2
в) (4/9) в степени -2
г) (0,1) в степени -2
д) (2 1/3) в степени - 3
е) 8в степени-1 + 6 в степени -2
ж) 456 в степени 0 - 0,1 в степени -3

Показать ответ
Ответ:
KrasotkaSofia195
KrasotkaSofia195
06.04.2023 14:56

1) Выражение x12+x22  получится, если взвести в квадрат обе части равенства x1+x2=-p;

(x1+x2)2=(-p)2;  раскрываем скобки: x12+2x1x2+ x22=p2;  выражаем искомую сумму: x12+x22=p2-2x1x2=p2-2q. Мы получили полезное равенство: x12+x22=p2-2q.

2) Выражение x13+x23 представим по формуле суммы кубов в виде:

(x13+x23)=(x1+x2)(x12-x1x2+x22)=-p·(p2-2q-q)=-p·(p2-3q).

Еще одно полезное равенство: x13+x23=-p·(p2-3q).

Примеры.

3) x2-3x-4=0. Не решая уравнение, вычислите значение выражения  x12+x22 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения

x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:

x12+x22=p2-2q. У нас -p=x1+x2=3 → p2=32=9; q=x1x2=-4. Тогда x12+x22=9-2·(-4)=9+8=17.

ответ: x12+x22=17.

4) x2-2x-4=0. Вычислить: x13+x23.

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x13+x23=-p·(p2-3q)=2·(22-3·(-4))=2·(4+12)=2·16=32.

ответ:  x13+x23=32.

Вопрос: а если нам дано не приведенное квадратное уравнение? ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x2-5x-7=0. Не решая, вычислить: x12+x22.

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x2-2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.

Решаем так же, как пример 3), используя равенство: x12+x22=p2-2q.

x12+x22=p2-2q=2,52-2∙(-3,5)=6,25+7=13,25.

ответ: x12+x22=13,25.

6) x2-5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x12+x22=p2-2q.

В нашем примере  x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения  в полученную формулу:

7) x2-13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас  x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:

Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

 


0,0(0 оценок)
Ответ:
ForaN777
ForaN777
17.05.2020 23:20
Смотрим, какие остатки может давать выражение при делении на 5:
1) Если n при делении на 5 дает остаток 0, то выражение дает при делении на 5 тот же остаток, что и 2016 (остаток 1), но должно делится на 5.

2)Если n при делении на 5 дает остаток 1, то выражение дает при делении на 5 остаток
(1-5+4+2016)\mod5\equiv1\mod5
Аналогично 1).

3)Если n при делении на 5 дает остаток 2, то выражение дает при делении на 5 остаток
(2-10+8+2016)\mod5\equiv1\mod5
Аналогично 1).

4)Если n при делении на 5 дает остаток 3, то выражение дает при делении на 5 остаток
(3-15+12+2016)\mod5\equiv1\mod5
Аналогично 1).

5)Если n при делении на 5 дает остаток 4, то выражение дает при делении на 5 остаток
(4-20+16+2016)\mod5\equiv1\mod5
Аналогично 1).

То есть при любом целом n значение данного выражения дает остаток 1 при делении на 5, то есть не кратно 5, а значит и не кратно 240
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота