2. 1-кестеде 11-сынып оқушыларының 200 м-ге жүгіру нәтижелері берілген.
1-кесте
24-25
26-27
28-29
30-31
32-33
Жүгіру нәтижелерінің интер-
валы (с-пен)
Нәтижелерді көрсеткен
оқушылар саны
4
9
11
10
6
1) Жарысқа қанша оқушы қатысқан?
2) Жүгіру нәтижелері қандай интервалдарда өзгерген?
3) Қанша оқушы 28 с-тан 33 с-қа дейінгі нәтижелерді көрсеткен?
4) Қанша оқушы 27 с-тан артық емес нәтижелерді көрсеткен?
g
Убедимся, что данное дифференциальное уравнение является однородным.
То есть, воспользуемся условием однородности
Итак, данное дифференциальное уравнение является однородным.
Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции с замены:
, тогда
По определению дифференциала, получаем
- уравнение с разделяющимися переменными.
Разделим переменные.
- уравнение с разделёнными переменными.
Проинтегрируем обе части уравнения
- общий интеграл новой функции.
Таким образом, определив функцию из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену:
То есть,
- общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной . Подставим в общий интеграл начальное условие:
- частный интеграл, также является решением данного дифференциального уравнения.
ответ:
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т : (Г)