(а+5)х²-(а+6)х+3=0 D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24 чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0 а²>=24 а1>=√24 а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0 -х²+3=0 -х²=-3|×(-1) х²=3 х 1=√3 х2=-√3
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)
D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24
чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0
а²>=24
а1>=√24
а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0
-х²+3=0
-х²=-3|×(-1)
х²=3
х 1=√3
х2=-√3
а=6- истина.
(6+5)х²-(6+6)х+3=0
11х²-12х+3=0
D=(-(-12))²-4×11×3=144-132=12
x1=(-(-12)-√12)/2×11=(12-√12)/22=(12-3,46)/22=8,54/22=0,3882
x2=(-(-12)+√12)/2×11=(12+√12)/22=(12+3,46)/22=15,46/22=0,7029
ответ: а€N, где N€(-беск.;-√24] и N€[√24;+беск.), €-знак принадлежит.