2.( ) Найдите площадь прямоугольника, если его стороны выражены Многочленами а = 2,5ry 22, b = -3,8xy'z. ответ запишите в виде многочлена стандартного вида и укажите его степень
Два натуральных числа (n) и (2017-n); очевидно, что это не двузначные числа: 99+99 < 2017 ... и не трехзначные: 2*999 < 2017 2017:2 = 1008.5 (одно из них точно больше 1000) если обозначить меньшее из этих чисел (n), то большее можно записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра например, (23) и (234 = 10*23 + 4); получим: 2017 - n = 10*n + c с = 2017 - 11n и осталось решить 10 уравнений: 0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N 1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N 2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N 3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N 4 = 2017 - 11n ---> n = 2013:11 = 183 5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N 6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N 7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N 8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N 9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N т.е. таких чисел только два... 183 и 1834
не двузначные числа: 99+99 < 2017
... и не трехзначные: 2*999 < 2017
2017:2 = 1008.5 (одно из них точно больше 1000)
если обозначить меньшее из этих чисел (n), то большее можно
записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра
например, (23) и (234 = 10*23 + 4); получим:
2017 - n = 10*n + c
с = 2017 - 11n
и осталось решить 10 уравнений:
0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N
1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N
2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N
3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N
4 = 2017 - 11n ---> n = 2013:11 = 183
5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N
6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N
7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N
8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N
9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N
т.е. таких чисел только два... 183 и 1834
y=-2x²+7x-3
y(-3)=-2*9+7*(-3)-3=-18-21-3=-42
y(-3)= - 42
6=(5/(x-1))+2; 5/(x-1)=6-2; 5/(x-1)=4; (пример записываем обыкновенной дробью, дальше прапорция)
4(x-1)=5; 4x-4=5; 4x=9; x=9:4; x=2,25
Ось симметрии параболы проходит через вершину и перпендикулярно оси Х. Координата х вершины:
х = -b/(2a) = (-6)/2 = -3
Уравнение оси симметрии выглядит: х = -3
y=x²+px+q А(-4,-9)-p/2=-4 => p=8
y(-4)=(-4)²+8(-4)+q=16-32+q=-16+q
y(-4)=-9
-16+q=-9
q=16-9=7
x²+8x+7=0 - искомое уравнение
y=-x²+2x-1=-(x²-2x+1)=-(x-1)²
Парабола у=-х²,ветви вниз,вершина (1;0)