2. Первая труба пропускает на 2 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 130 литров она заполняет на 4 минуты быстрее, чем первая труба заполняет резервуар объёмом 136 литров?
В решении.
Объяснение:
Дана функция у= -х² - 4х + 4;
a) координаты вершин параболы;
1) Найти х₀:
Формула: х₀ = -b/2a;
у= -х² - 4х + 4;
х₀ = 4/-2
х₀ = -2;
2) Найти у₀:
у= -х² - 4х + 4;
у₀ = -(2²) - 4*(-2) + 4 = -4 + 8 + 4 = 8
у₀ = 8;
b) ось симметрии параболы;
Ось симметрии Х = х₀
Х = -2;
c) точки пересечения параболы с осью Ох;
Точки пересечения параболы с осью Ох называются нулями функции (у в этих точках равен нулю).
Приравнять уравнение функции к нулю и решить квадратное уравнение:
-х² - 4х + 4 = 0/-1
х² + 4х - 4 = 0
D=b²-4ac = 16 + 16 = 32 √D=√16*2 = 4√2
х₁=(-b-√D)/2a
х₁=(-4-4√2)/2
х₁= -2 - 2√2 ≈ -4,8;
х₂=(-b+√D)/2a
х₂=(-4+4√2)/2
х₂= -2 + 2√2 ≈ 0,8;
х₁= -2 - 2√2; х₂= -2 + 2√2 - нули функции.
d) точки пересечения параболы с осью Оу;
Любой график пересекает ось Оу при х = 0:
у= -х² - 4х + 4;
у = -0² - 4*0 + 4
у = 4;
Парабола пересекает ось Оу при у = 4;
e) постройте график функции;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х₁= -2 - 2√2 ≈ -4,8 и
х₂= -2 + 2√2 ≈ 0,8.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у= -х² - 4х + 4;
Таблица:
х -6 -5 -4 -3 -2 -1 0 1 2
у -8 -1 4 7 8 7 4 -1 -8
По вычисленным точкам построить параболу.
Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.