20 ! бильярдный шар находится возле большого борта бильярдного стола прямоугольной формы на расстоянии 1м от ближайшей лузы. после удара под углом 45° к этому борту шар отразился от трёх бортов. на каком расстоянии от ближайшей лузы он ударился о четвёртый борт, если ширина стола 2 м, а длина 2,8 м(при ударе о борт угол отражения равен углу падения а.100 см б. 80 см в. 40см г. 20 см.
у=-4
-4=-2x²+5x+3
2x²-5x=7
2x²-5x-7=0
D=(-5)²-4*2*(-7)=81 √81=9
x₁=(5+9)/2*2=14/4=3.5
y=-4 при x₁=3.5; x₂=-1
x₂=(5-9)/2*2=-4/4=-1
2. f(x)= х² – 2х – 8 График во вложении
а. y>0 при x∈(-∞;-2)∪(4;+∞)
y<0 при x∈(-2;4)
б. f возрастает (x₂>x₁ => y₂>y₁) при x∈(1;+∞)
f убывает (x₂>x₁ => y₂<y₁) при x∈(-∞;1)
в. y(max)=∞
y(min)=-9
3. у = -5х² + 6х
Парабола y=ax²+bx, a<0, значит ветви параболы направлены вниз.
y(min)=-∞
y(max) принадлежит вершине параболы: х=-b/2a => x=-6/2*-5=0.6
y=-5*0.6²+6*0.6 => y=1.8
Координаты вершины (0.6;1.8)
y(max)=1.8
4. Для нахождение точек пересечения 2-х графиков, решаем систему уравнений:
{у = х + 2
{у = ( х – 2)² + 2
x²-4x+4+2=x+2
x²-5x+4=0
x₁+x₂=5
x₁*x₂=4
x₁=4
x₂=1
y₁=4+2=6
y₂=1+2=3
Точки пересечения: (4;6) и (1;3)
Для графического решения, чертим грапфики обеих функций в одной кооординатной плоскости.
График во вложеннии
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.