В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Mesnikfff
Mesnikfff
18.08.2022 15:16 •  Алгебра

223. В поезде 14 вагонов. Сколькими можно распределить за каждым из них одного из 14 проводников?​

Показать ответ
Ответ:
CERRY050505
CERRY050505
31.03.2020 21:12

В решении.

Объяснение:

С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:

а) х²= 2;

Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.

Из точки оси Оу  у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.

х ≈ 1,4;

б) х² = 7;

Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.

х ≈ 2,6;

в) х² = 5,5

Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.

х ≈ 2,3.

0,0(0 оценок)
Ответ:
nastya2739
nastya2739
12.05.2020 17:06

\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]

Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:  

 \[\frac{sin x * cos x}{16}  = 0\]

Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):

 \[2sin x * cos x  = 0\]

По формулам тригонометрии мы знаем, что:  

 \[2sin x * cos x  = sin 2x\]

Запишем наше красивое уравнение:  

 \[sin 2x = 0\]

А теперь его решим.

Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:  

 \[sin x = a\]

 

 \[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

 \[sin 2x = 0\]

Но у нас будет не просто х, а двойной:  

 \[2x =  (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]

Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

 \[sin 2x = 0 \]

 

 \[2x = \pi k, k \in \mathbb{Z}\]

Чтоб найти х надо каждый член поделить на два и из этого получим следующее:

 \[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]

ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота