Воспользуемся классическим определением вероятности. Вероятность события А найдем как отношение числа благоприятных исходов к числу всех возможных исходов: .
Всего шаров 7 + 3 = 10. Выбрать 2 шара из 10 - поскольку не учитывается порядок - можно поэтому
Выбрать 2 черных шара из 3 можно поэтому
Итого
Разобьем событие как бы на два других: В - первый шар будет черным; С - второй шар будет черным.
Вероятность того, что первый шар будет черным, по определению вероятности равна , поскольку всего шаров 10, а черных - 3. После того, как взяли один черный шар, всего осталось 9 шаров, из которых 2 черных. Поэтому вероятность того, что второй шар будет черный, равна .
Поскольку необходимо, чтобы одновременно и первый, и второй шар были черными, искомую вероятность можно найти, перемножив вероятности событий В и С, т.е.
Трёхзначное число содержит три цифры, по условию только одна из которых 3.
1) Числа вида . Цифры a и b могут быть любыми из оставшихся девяти цифр. Всего трёхзначных чисел с единственной тройкой в разряде сотен 9·9=81.
2) Числа вида и . Цифры c и m могут быть любыми из восьми (1,2,4,5,6,7,8,9), а цифры d и n могут быть любыми из девяти (0,1,2,4,5,6,7,8,9). Всего трёхзначных чисел с единственной тройкой в разряде десяток 8·9=72. И столько же с единственной тройкой в разряде единиц 8·9=72.
ОТВЕТ: 1/15.
Решение Пусть событие А - оба шара черные.
Воспользуемся классическим определением вероятности. Вероятность события А найдем как отношение числа благоприятных исходов к числу всех возможных исходов: .
Всего шаров 7 + 3 = 10. Выбрать 2 шара из 10 - поскольку не учитывается порядок - можно поэтому
Выбрать 2 черных шара из 3 можно поэтому
Итого
Разобьем событие как бы на два других: В - первый шар будет черным; С - второй шар будет черным.
Вероятность того, что первый шар будет черным, по определению вероятности равна , поскольку всего шаров 10, а черных - 3. После того, как взяли один черный шар, всего осталось 9 шаров, из которых 2 черных. Поэтому вероятность того, что второй шар будет черный, равна .
Поскольку необходимо, чтобы одновременно и первый, и второй шар были черными, искомую вероятность можно найти, перемножив вероятности событий В и С, т.е.
Всего 10 цифр : 0,1,2,3,4,5,6,7,8,9
Трёхзначное число содержит три цифры, по условию только одна из которых 3.
1) Числа вида . Цифры a и b могут быть любыми из оставшихся девяти цифр. Всего трёхзначных чисел с единственной тройкой в разряде сотен 9·9=81.
2) Числа вида и . Цифры c и m могут быть любыми из восьми (1,2,4,5,6,7,8,9), а цифры d и n могут быть любыми из девяти (0,1,2,4,5,6,7,8,9). Всего трёхзначных чисел с единственной тройкой в разряде десяток 8·9=72. И столько же с единственной тройкой в разряде единиц 8·9=72.
Тогда всего трёхзначных чисел с одной тройкой
81 + 72 + 72 = 225
ответ : 225