3. Периметр равнобедренного треугольника равен р, его основание а. Составьте выражение для вычисления боковой стороны треугольника А) 2а-р. B) 2р -а; С) р-а:
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -
9 и 18 часов
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
ответ: 9 и 18 часов.
Всего 60 трехзначных чисел
На первое место можно разместить любую из пяти цифр, пять На второе место можно разместить любую из четырех цифр, четыре На третье место любую из оставшихся трех цифр, три На все три места результаты выбора умножаем.
5·4·3=60
а) кратны трем те числа, у которых сумма цифр кратна трем
Например, используя цифры 1; 2; 3, сумма цифр которых 1+2=3=6 кратна 3 можно составит шесть чисел, кратных 3:
123; 132;321;312;231;213
Возможностей 4:
1+2+3=6 кратно 3
2+3+4= 9 кратно 3
3+4+5=12 кратно 3
1+3+5=9 кратно 3
В каждой возможности 6 чисел. Всего 24 числа.
б) Кратны четырем те трехзначные числа, у которых две последние цифры кратны 4. Возможны варианты:
*12
*24
*32
*52
На первое место можно разместить любую из оставшихся трех цифр, тремя Всего 3·4=12 чисел
в) кратных 5:
12:
на последнем месте обязательно располагается цифра 5 ( числа кратные 5 оканчиваются на 5 или на 0, 0 у нас нет). На первое место можно выбрать любую из четырех оставшихся цифр - четыре на второе место любую из оставшихся трех - три Всего Подробнее - на -