3. Возвести в куб сумму 3х+1:
а) 9х3+27х2+9х+1;
б) 27х3 +27х2+9х+1;
в) 9х3+6х2+3х+1.
4. Преобразуйте выражение в многочлен : (5у+2х)2
а) 5у2+10ху+2х2;
б) 25у2+10ху+4х2;
в) 25у2+20ху+4х2.
5. Представьте в виде многочлена: (6-2m)2
а) 36-24m+4m2;
б) 36+24m+4m2;
в) 6-12m+2m2.
1.
8!/(8-6)!=(8*7*6*5*4*3*2*1)/(2*1)=8*7*6*5*4*3=2400
2*1=2
2400*2=4800
2.
15!/(15-5)!=15!/10!=15*14*13*12*11
14!/(14-5)!=14!/9!=14*13*12*11*10
14!/(14-4)!=14!/10!=14*13*12*11
(15*14*13*12*11-14*13*12*11*10)/(14*13*12*11)=((14*13*12*11)*(15-10))/(14*13*12*11)=15-10=5
3.
20!=20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1
20!/(20-5)=20!/15!=(20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1)/(15*14*13*12*11*10*9*8*7*6*5*4*3*2*1)=20*19*18*17*16
20!/(20-15)!=20!/5!=(20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1)/(5*4*3*2*1)=20*19*18*17*16*15*14*13*12*11*10*9*8*7*6
(20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1)/(20*19*18*17*16*15*14*13*12*11*10*9*8*7*6)=5*4*3*2*1=20*6=120
|| - параллельнсть
l - переменная
k - коэффициент
функции ||, если они не могут быть равны, т.е. у них нет точек пересечения, согласно определению параллельности (|| те прямые, которые не имеют точек пересечения).
а если точка пересечения есть, тогда функции пересекаются, т.е. они оба пересекают определенную координату, следовательно они должны быть равны между собой
линейные функции
тогда можно прийти к выводу, что если k1=k2, функции параллельны, ибо:
y=kx+l если представить как равно значение:
kx+l=kx+l
l=l, т.е. если k1=k2, l1=l2, проще говоря, не существует какой-либо функции, которая пересекает y=kx+l, если их k равны.
например, y=5x+2
5x+2=5x+2
2=2, если вместо 2 мы подставим любое другое число, равенство станет неверным.
из этого можно сделать вывод, что если k1 не равно k2, тогда функции пересекаются, ибо:
y=k1x + l и y=k2x+l
k1x + l = k2x+ l
l мы сможем сократить только при условии, что они равны, но тогда мы получим все равно верное равенство, просто тогда точкой пересечения будет (0; l), т.е. при x=0 функции станут равными, ибо при умножении k на 0 будет 0, останется только l=l
если же l1 не равно l2, тогда у нас выйдет уравнение с 2 переменными, а значит оно имеет бесконечное множество решений при любом х (если, конечно, x имеет смысл и нет всяких делений на 0 и т.д.), следовательно первая функция при любых значениях k и l будет иметь точку пересечения со второй функцией, если k второй функции не равен k первой функции
1 || 2 || 3