Скорость I туриста - х км/ч Скорость II туриста - у км/ч
Первая часть задачи: Расстояние , пройденное I туристом - 2х км Расстояние , пройденное II туристом - 2у км Расстояние , пройденное двум туристами - (24-6)= 18 км Первое уравнение : 2х + 2у = 18
Вторая часть задачи: Расстояние, пройденное I туристом - (2+2) х = 4х км Расстояние, пройденное II туристом - (2+2)у = 4у км Разница в расстоянии - 4 км Второе уравнение: 4х - 4у = 4
Скорость II туриста - у км/ч
Первая часть задачи:
Расстояние , пройденное I туристом - 2х км
Расстояние , пройденное II туристом - 2у км
Расстояние , пройденное двум туристами - (24-6)= 18 км
Первое уравнение :
2х + 2у = 18
Вторая часть задачи:
Расстояние, пройденное I туристом - (2+2) х = 4х км
Расстояние, пройденное II туристом - (2+2)у = 4у км
Разница в расстоянии - 4 км
Второе уравнение:
4х - 4у = 4
Система уравнений:
{2x+2y=18 | :2
{4x - 4y= 4 | :4
{x+y = 9 ⇒ у=9-х
{x-y=1
метод сложения
х+у +х-у=9+1
2х=10
х=10/2
х=5 (км/ч) скорость I пешехода
у=9-5= 4 (км/ч) скорость II пешехода
ответ: 5 км/ч скорость первого пешехода, 4 км/ч скорость второго пешехода.
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.