Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
Уравнение квадратичной функции в общем виде y=ax²+bx+c. Если функция проходит через заданные точки, то они должны удовлетворять этой функции: точка (0;3) _ a0²+b0+c=3; c=3; точка (1;5) _ a1²+b1+c=5; a+b+c=5; точка (2;9); a2²+b2+c=9. Решаем систему этих уравнений: a+b+3=5; 4a+2b+3=9. Из первого уравнения выделяем а: a=2-b и подставляем его во второе уравнение: 4(2-b)+2b=9-3; 8-4b+2b=6; -2b=-2; b=1. Находим а: а=2-1=1. Теперь, когда все коэффициенты известны можем записать уравнение проходящее через заданные точки: у=x²+х+3
ответ: 32 ц
Объяснение:
Перепишем текст задачи в алгебраическом виде.
Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
Решаем систему уравнений методом подстановки:
4 * Х = 6 * (X - 16)
6 * X - 4 * X = 16
2 * X = 16
X = 8
=> 4 * X = 4 * 8 = 32 ц