40
остаток от деления многочлена p (x) на x −2 равен 3, на x+1 равен 2, на x+3 равен нулю. найдите остаток от деления этого многочлена на:
а) x^2+x^4+3; б) (x−2)(x+3)(x+1).
докажите, что сумма всех коэффициентов при нечетных степенях многочлена q(x) стандартного вида равна q(1)−q(−1)/2.
пусть остаток от деления многочлена () на 23+2−7−6 равен 32−+4. найдите (−1,5).
разложите многочлен 3x^4−5x^3−28x^2+3x+35 на квадратичные множители методом неопределённых коэффициентов.
156:2=78
Значит раскладываем 156 на 2 и 78.
Так же в свою очередь можно разложить и 78:
78=2*39
А это значит что и число 156 можно представить в виде:
156=2*2*39
отсюда можно сделать выводы, что число 156 делиться и на 2, и на 4, и на 78, и на 39. Вот такая логика.
Теперь рассмотрим наше число. Разложим по формуле как сумма кубов:
Сама формула:
В нашем случае:
И давайте посмотрим на первый множитель:
36+63=99
А 99 отлично делиться на 11:
99:11=9
А это значит, что данное число () без проблем делиться на 11.
Объяснение:
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
тұрлаулы мүшелер (бастауыш, баяндауыш);
тұрлаусыз мүшелер (анықтауыш, толықтауыш, пысықтауыш).
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]