В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
nastyateam1
nastyateam1
21.09.2021 02:33 •  Алгебра

4cosx cos(60-x) cos (60+x) =cos3x докажите тождество

Показать ответ
Ответ:
140219801
140219801
23.05.2023 05:00
Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d:
x_{k-1}=a \\\ x_{k}=b=a+d \\\ x_{k+1}=c=a+2d
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена.
Значит, нужно доказать, что:
a^2+ac+c^2= \frac{(a^2+ab+b^2)+(b^2+bc+c^2)}{2}
Выполняем преобразования:
2(a^2+ac+c^2)=a^2+ab+b^2+b^2+bc+c^2 \\\ 2a^2+2ac+2c^2=a^2+ab+2b^2+bc+c^2 \\\ a^2+2ac+c^2=ab+2b^2+bc
Выражаем b и с через а и d:
a^2+2a(a+2d)+(a+2d)^2=a(a+d)+2(a+d)^2+(a+d)(a+2d) \\\ a^2+2a^2+4ad+a^2+4ad+4d^2= \\\ =a^2+ad+2a^2+4ad+2d^2+a^2+2ad+ad+2d^2
\\\
4a^2+8ad+4d^2=4a^2+8ad+4d^2
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
0,0(0 оценок)
Ответ:
Mouse125
Mouse125
30.09.2020 11:19

Подобно звёздам на небосводе сияют в числовом космосе простые числа. Не одну тысячу лет к ним приковано внимание математиков – их вновь и вновь ищут, исследуют, находят им применение. Евклид и Эратосфен, Эйлер и Гаусс, Рамануджан и Харди, Чебышёв и Виноградов... Этот перечень выдающихся учёных занимавшихся простыми числами и задачами с ними связанными можно продолжать и продолжать.

На страницах нашего сайта уже шла речь о бесконечности ряда простых чисел и некоторых смежных вопросах. При этом нас интересовали все простые числа сразу. Иногда же интересно рассмотреть совокупности из двух, трёх, четырёх или более простых чисел. Именно о таких совокупностях – созвездиях простых чисел – пойдёт речь далее. 

Простые числа-близнецы

Два простых числа, которые отличаются на 2, как

5  и  7,

11  и  13,

17  и  19,

получили образное название близнецы (эти числа называют ещё парными простыми числами). Любопытно, что в натуральном ряду имеется даже тройня простых чисел – это числа

3,  5,  7.

Ну а сколько всего существует близнецов – современной математике неизвестно.

Числа-близнецы из заданной таблицы чисел можно просеивать, слегка подправив решето Эратосфена. Если для каждого вычеркнутого Эратосфена числа n вычеркнуть так же число n – 2, то в таблице останутся лишь такие числа р, для которых число р + 2 тоже простое. В пределах первой сотни близнецы – это следующие пары чисел:

3  и  5,

5  и  7,

11  и  13,

17  и  19,

29  и  31,

41  и  43,

59  и  61,

71  и  73.

С парами близнецов в пределах 10000 можно познакомиться на страницах нашего сайта в Таблице простых и парных простых чисел, не превосходящих 10000, где они выделены красным цветом.

Вот лишь некоторые свойства этих чисел, которых лежат на самой поверхности океана простых чисел:

все пары простых близнецов, кроме 3 и 5, имеют вид 6n ± 1;при делении на 30 все пары близнецов, кроме первых двух, дают следующие пары остатков:

11  и  13,

17  и  19,

29  и  1;

по мере удаления от нуля близнецов становится всё меньше и меньше. Так, в пределах первой сотни натуральных чисел существуют восемь пар близнецов, а в пределах пяти сотен с 9501 по 10000 – шесть.

Предполагается, что пар простых чисел-близнецов бесконечно много, но это не доказано. Исследования, проводимые в "глубоком числовом космосе", продолжают выявлять эти замечательные и загадочные пары. На данный момент рекордсменами считаются близнецы

3756801695685 · 2666669 ± 1,

которые были обнаружены 24 декабря 2011 года в рамках реализации проекта PrimeGrid. Для записи каждого из этих чисел понадобиться 200700 цифр. 

 

Простые числа-триплеты

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются –

2, 3, 5  и  3, 5, 7.

Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел

p, p+2, p+6  или  p, p+4, p+6

называется триплетом. 

Простые числа-триплеты в пределах первой сотни:

  5,  7, 11;

  7, 11, 13;

11, 13, 17;

13, 17, 19;

17, 19, 23;

37, 41, 43;

41, 43, 47;

67, 71, 73.


 


 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота