[5] 3. Шеңбер бойында жататын А нүктесі арқылы AB диаметрі мен Ас хордасы жүргізілген. Ас =8 және ВАС =30°. AB диаметріне перпендикуляр CM хордасы жіргізілген және олар к нүктесінде қиылысады. СМ хордасының ұзындығын табыңыз. [5]
Решение: Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так: х/у Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение: (х+1)/(у+1)=1/2 Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение: (х-1)/(у-1)=1/3 Решим получившуюся систему уравнений: (х+1)/(у+1)=1/2 (х-1)/(у-1)=1/3 (х+1)=1/2*(у+1) Приведём к общему знаменателю 2 (х-1)=1/3*(у-1) Приведём к общему знаменателю 3 2х+2=у+1 3х-3=у-1
2х-у=1-2 3х-у=-1+3
2х-у=-1 3х-у=2 Вычтем из первого уравнения второе уравнение: 2х-у-3х+у=-1-2 -х=-3 х=-3 : -1 х=3 Подставим значение х=3 в первое уравнение: 2*3 -у=-1 -у=-1-6 -у=-7 у=-7 : -1 у=7 Отсюда: х/у=3/7
Пусть х км/ч собственная скорость катера (ОДЗ x>0)
у км/ч скорость течения реки (ОДЗ y>0),
тогда
(х+у) км/ч скорость катера по течению
(х-у) км/ч скорость катера против течения
По условию 15 км по течению и 18 км против течения пройдено за 1 ч 45 мин., иначе 1ч 45 мин = 1 ³/₄ часа,
Получаем первое уравнение:
По условию 5 км по течению катер проходит 15 мин., иначе 15 мин = ¹/₄ часа,
Получаем второе уравнение:
Система уравнений:
Решаем её.
Из второго уравнения выразим (x+y):
Подставим в первое:
Решаем упрощенную систему:
Сложим:
тогда
ответ: 19 км/ч собственная скорость катера;
1 км/ч скорость течения реки
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7