5. а) рассчитайте значение х, с которой числовая последовательность : x+1; 4x-1; x^2+3 является арифметической прогрессией
b) решите уравнение 5+8+11+...(3ч+2)=670
с) рассчитайте х значение, с которой 3 числовых последавателньостей 36; 7*3^x; 2*3^x являются арифметической прогрессией
А) проходит. В) проходит.
Пошаговое объяснение:
Чтобы узнать, проходит ли график функции через точку, нужно подставить в уравнение, которым задана функция одной переменной, координаты точки: первую (абсциссу) вместо х, вторую (ординату) - вместо у. Если получим верное равенство, значит, проходит, в противном случае - не проходит.
А) 6 = 2*(-2)^(2) - (-2) - 4 = 10 - 4 = 6. Равенство верное, значит, график функции проходит через точку А.
В) 2 = 2*(-1,5)^(2) - (-1,5) - 4 = 6 - 4 = 2. Равенство верное, значит, график функции проходит через точку В.
Объяснение:
Дано:
A) x⁴ + x³ + 11x² + 6x - 12
B) x⁴ + x³ - 7x² - x + 6
C) x⁴ - x³ - x² + 7x - 6
D) x⁴ - x³ - 11x² + 6x - 8
Корни многочлена
x₁ = -1
x₂ = 1
x₃ = 2
x₄ = -3
Найти:
Выбрать многочлен с данными корнями
Многочлен А)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ + 11 · (-1)² + 6 · (-1) - 12 = 1 - 1 + 11 - 6 -12 = -7
Многочлен А) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен В)
Подставим корень x₁ = -1
(-1)⁴ + (-1)³ - 7 · (-1)² - (-1) + 6 = 1 - 1 - 7 + 1 + 6 =0
Продолжим проверку
Подставим корень x₂ = 1
1⁴ + 1³ - 7 · 1² - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0
Продолжим проверку
Подставим корень x₃ = 2
2⁴ + 2³ - 7 · 2² - 2 + 6 = 16 + 8 - 28 - 2 + 6 = 0
Проверим и последний корень
x₄ = -3
(-3)⁴ + (-3)³ - 7 · (-3)² - (-3) + 6 = 81 - 27 - 63 + 3 + 6 = 0
Многочлен В) подходит, так как его значение при ПРИ ВСЕХ КОРНЯХ равно нулю.
Многочлен С)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - (-1)² + 7 · (-1) - 6 = 1 + 1 - 1 - 7 - 6 = -12
Многочлен С) не подходит, так как его значение при x₁ = -1 не равно нулю.
Многочлен D)
Подставим корень x₁ = -1
(-1)⁴ - (-1)³ - 11 · (-1)² + 6 · (-1) - 8 = 1 + 1 - 11 - 6 - 8 = -23
Многочлен D) не подходит, так как его значение при x₁ = -1 не равно нулю.
B) x⁴ + x³ - 7x² - x + 6