Можно решить путем составления системы уравнений. обозначим через х - число деталей в день 1 рабочего, а через у - количество дней. тогда для второго рабочего это будет х+5 и у-1 составим систему { ху=100 (х+5)(у-1)=100 преобразуя эту систему, получим у=(х+5)/5. далее в выражение ху=100 подставим значение у. получим квадратное уравнение x^2+5x-500=0. корнями этого уравнения будут х1=-25, х2=20. выбираем 20. столько изготавливает в день первый рабочий.
У брата х груш, а у сестры у² яблок. Вместе у них было 11 этих фруктов. Если бы у брата было у груш, а у сестры -х² яблок, то всего этих фруктов у них было бы 7. Сколько было груш и сколько было яблок?
Правильное условие такое:
У брата х груш, а у сестры у² яблок. Вместе у них было 11 этих фруктов. Если бы у брата было у груш, а у сестры -х² яблок, то всего этих фруктов у них было бы 7. Сколько было груш и сколько было яблок?
Решение.
ОДЗ:
Методом подбора быстрее.
1) Начнем с решения второго уравнения.
Если то 7-1=6. Тогда не натуральное число.
Если то 7-2=5. Тогда не натуральное число.
Если то 7-3=4. Тогда натуральное число.
Получили решение
2) Подставим в первое уравнение .
верное равенство.
ответ: 2 груши у брата;
3 яблока у сестры.