Я тоже в седьмом, поэтому смогу Если же в самом примере отсутствуют какие либо знаки – значит умножение, например:
3а²в⁴
Сам пример:
Так как здесь все числа перемножаются, то мы сможем переместить их по закону, позволяющему нам это:
(-0,1ab²c)²(100by²) = 0,1 • 100
Если знаешь таблицу умножения и деления на 10 и 0,1, могу не рассказывать, но на всякий пожарный:
х • 10 = запятая перемещается вправо на количество нулей после единицы
х : 10 = запятая перемещается влево на количество нулей после единицы
х • 0,1 = запятая перемещается влево на количество цифр после запятой
х : 0,1 = запятая перемещается вправо на количество цифр после запятой.
(-0,1ab²c)²(100by²) = 0,1 • 100= 10
10а²(b²)²c²by² = 10a²b^5c²y²
ab²c)²(100by² - так как здесь все скобки возводятся во вторую степень, значит все буквы со своими степенями тоже, там где нам буквой степень не написана, там ¹. Здесь мы действием по правилу :
Я тоже в седьмом, поэтому смогу Если же в самом примере отсутствуют какие либо знаки – значит умножение, например:
3а²в⁴
Сам пример:
Так как здесь все числа перемножаются, то мы сможем переместить их по закону, позволяющему нам это:
(-0,1ab²c)²(100by²) = 0,1 • 100
Если знаешь таблицу умножения и деления на 10 и 0,1, могу не рассказывать, но на всякий пожарный:
х • 10 = запятая перемещается вправо на количество нулей после единицы
х : 10 = запятая перемещается влево на количество нулей после единицы
х • 0,1 = запятая перемещается влево на количество цифр после запятой
х : 0,1 = запятая перемещается вправо на количество цифр после запятой.
(-0,1ab²c)²(100by²) = 0,1 • 100= 10
10а²(b²)²c²by² = 10a²b^5c²y²
ab²c)²(100by² - так как здесь все скобки возводятся во вторую степень, значит все буквы со своими степенями тоже, там где нам буквой степень не написана, там ¹. Здесь мы действием по правилу :
(а²)⁴ = а^8
Степени:
х² • х⁴ = х^6
а⁴ : а³ = а¹ = а
(а²)⁴ = а^8
^ - степень
ответ: (-0,1ab²c)²(100by²) = 10a²b^5c²y²
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.