х = 32, у = 29.
Объяснение:
Записываем условие:
x - y = 3
x^2 - y^2 = 183
Выражаем y через х из первого уравнения.
y = x - 3
Заменяем y во втором уравнении.
x^2 - (x - 3)^2 = 183
Раскрываем x - 3 по правилу сокращенного умножения
(a - b)^2 = a^2 - 2ab + b^2
(x - 3)^2 = x^2 - 6x + 9
Записываем все в одно уравнение:
x^2 - (x^2 - 6x + 9) = 183
Раскрываем скобки, меняя знаки.
x^2 - x^2 + 6x - 9 = 183
6x - 9 = 183
6x = 192
x = 192/6 = 32
Следовательно y = x - 3 = 32 - 3 = 29.
Проверяем:
32 - 29 = 3
32^2 = 1024; 29^2 = 841; 1024 - 841 = 183
Все верно.
х = 32, у = 29.
Объяснение:
Записываем условие:
x - y = 3
x^2 - y^2 = 183
Выражаем y через х из первого уравнения.
y = x - 3
Заменяем y во втором уравнении.
x^2 - (x - 3)^2 = 183
Раскрываем x - 3 по правилу сокращенного умножения
(a - b)^2 = a^2 - 2ab + b^2
(x - 3)^2 = x^2 - 6x + 9
Записываем все в одно уравнение:
x^2 - (x^2 - 6x + 9) = 183
Раскрываем скобки, меняя знаки.
x^2 - x^2 + 6x - 9 = 183
6x - 9 = 183
6x = 192
x = 192/6 = 32
Следовательно y = x - 3 = 32 - 3 = 29.
Проверяем:
32 - 29 = 3
32^2 = 1024; 29^2 = 841; 1024 - 841 = 183
Все верно.
3^(2sinx·tgx)·3^(3tgx)=3^(-1/cosx);
3^(2sinx·tgx+3tgx)=3^(-1/cosx);
2sinx·tgx+3tgx=-1/cosx;
(2sinx·tgx+3tgx)*cosx=-1;
2sinx·tgx*cosx+3tgx*cosx=-1;
Так как tgx=sinx/cosx, получаем
2sin²x+3sinx+1=0;
sinx=t, -1≤t≤1;
2t²+3t+1=0;
D=9-8=1;
t1=(-3-1)/4=-1;
t2=(-3+1)/4=-1/2;
sinx=-1;
x=-π/2+2πn, n∈Z; (1)
или
sinx=-1/2;
x=(-1)^k*arcsin(-1/2)+πk, k∈Z;
x=(-1)^(k+1)*arcsin 1/2+πk, k∈Z;
x=(-1)^(k+1)*π/6+πk, k∈Z. (2)
Проверим ОДЗ:
cosx≠0;
x≠π/2+πn, n∈Z.
Таким образом, корень (1) не подходит.
ответ: (-1)^(k+1)*π/6+πk, k∈Z.