Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Примем время наполнения бассейна через первую трубу за х, а время слива всей воды из бассейна через вторую трубу за у. На основании задания составим систему из двух уравнений. {у - х = 1, {(1/x) - (1/y) = 1/30. Применим подстановку у = х + 1 во второе уравнение. (1/х) - (1/(х + 1)) = 1/30. Приведём к общему знаменателю. 30х + 30 - 30х = х(х + 1), х² + х - 30 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=1^2-4*1*(-30)=1-4*(-30)=1-(-4*30)=1-(-120)=1+120=121;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√121-1)/(2*1)=(11-1)/2=10/2=5;x₂=(-√121-1)/(2*1)=(-11-1)/2=-12/2=-6 (отрицательный корень отбрасываем).
ответ: время наполнения пустого бассейна через первую трубу равно 5 часов.
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
На основании задания составим систему из двух уравнений.
{у - х = 1,
{(1/x) - (1/y) = 1/30.
Применим подстановку у = х + 1 во второе уравнение.
(1/х) - (1/(х + 1)) = 1/30.
Приведём к общему знаменателю.
30х + 30 - 30х = х(х + 1),
х² + х - 30 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1^2-4*1*(-30)=1-4*(-30)=1-(-4*30)=1-(-120)=1+120=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-1)/(2*1)=(11-1)/2=10/2=5;x₂=(-√121-1)/(2*1)=(-11-1)/2=-12/2=-6 (отрицательный корень отбрасываем).
ответ: время наполнения пустого бассейна через первую трубу равно 5 часов.