Объяснение: Пусть t1 - время за которое первый турист пол пути, а t2-вторго, тогда t1=t2+1 (потому что он вышел на час раньше).
Тогда v1*t1=20 км (40/2=20) и v2*t2=20, (t2+1)*v1=20 t2*v2=20 отсюда выразим v1 и v2 и получим v1=20/(t2+1) v2=20/(t2), теперь посмотрим в начало задачи и получим что v1*4 + v2*4 = 40-4 (тк они шли навстречу, то суммируем их скорость на время) тогда v1+v2=9 подставим вместо v1 и v2 и получим 20/t2 + 20/(t2+1) = 9 от сюда выразим t2 и получим -9t2^2 - 9t2 +40t2 +20 = 0, решим уравнение и получим t2=4 и t2=-5/9, значит t2 = 4 подставим в начальную систему и получим v1 = 20/5 = 4 и v2 = 20/4 = 5
v1 = 5 км/ч v2 = 4 км/ч
Объяснение: Пусть t1 - время за которое первый турист пол пути, а t2-вторго, тогда t1=t2+1 (потому что он вышел на час раньше).
Тогда v1*t1=20 км (40/2=20) и v2*t2=20, (t2+1)*v1=20 t2*v2=20 отсюда выразим v1 и v2 и получим v1=20/(t2+1) v2=20/(t2), теперь посмотрим в начало задачи и получим что v1*4 + v2*4 = 40-4 (тк они шли навстречу, то суммируем их скорость на время) тогда v1+v2=9 подставим вместо v1 и v2 и получим 20/t2 + 20/(t2+1) = 9 от сюда выразим t2 и получим -9t2^2 - 9t2 +40t2 +20 = 0, решим уравнение и получим t2=4 и t2=-5/9, значит t2 = 4 подставим в начальную систему и получим v1 = 20/5 = 4 и v2 = 20/4 = 5
ответ v1 = 5 км ч v2 = 4 км ч
sinx * siny = 1/4
cosx * cosy = 3/4
Сложим и вычтем уравнения системы. Получаем
cosx * cosy + sinx * siny = 1
cosx * cosy - sinx * siny = 1/2
cos (x - y) = 1
cos (x + y) = 1/2
x - y = 2 * π * n
x + y = ±π/3 + 2 * π * m
Сложим и вычтем уравнения полученной системы
2 * х = 2 * π * n ± π/3 + 2 * π * m
2 * y = ± π/3 + 2 * π * m - 2 * π * n
x = π * n ± π/6 + π * m
y = ± π/6 + π * m - π * n
или
sinx*siny=1/4
cosx*cosy=3/4
Сложим и вычтем уравнения системы и по формулам косинуса суммы и разности перейдем к более простой системе:
cos(x+y) = 1/2, x+y = +-pi/3 + 2pik
cos(x-y) = 1, x-y = 2pik, вычтем из первого-второе:
Объяснение:
это как я понимаю