Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых
2)65-35=30 размах
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел
3) Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем. В ряду чисел 58,60,49,35,51,42,65,40 моды нет.
4) Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Выстраиваем ряд в порядке возрастания 35, 40, 42, 49, 51, 58, 60, 65
Заметим, что 94 = 95 - 1 ⇒ xy + z = x + yz - 1 ⇔ xy - x + z - yz = -1 ⇔ x(y - 1) - z( y - 1) = -1 ⇔ (y - 1)(x - z) = 1 ⇔ (y - 1)(z - x) = 1. Значит, либо оба множителя равны 1, либо -1, либо один из них целый, а второй - обратный первому. В последнем случае получается, что какое-то из чисел обязательно будет дробным, а это не удовлетворяет условию задачи.
1) y - 1 = -1, z - x = -1 ⇒ y = 0, z = 94, x = 95. z - x = 94 - 95 = -1 - верно, решение (95; 0; 94) подходит.
2) y - 1 = 1, z - x = 1 ⇒ y = 2.
z - x = 32 - 31 = 1 - верно, решение (31; 2; 32) подходит.
1)(58+60+49+35+51+42+65+40):8=50 -среднее арифметическое
Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых
2)65-35=30 размах
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел
3) Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем. В ряду чисел 58,60,49,35,51,42,65,40 моды нет.
4) Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Выстраиваем ряд в порядке возрастания 35, 40, 42, 49, 51, 58, 60, 65
медиана=49+51/2=100/2=50
Заметим, что 94 = 95 - 1 ⇒ xy + z = x + yz - 1 ⇔ xy - x + z - yz = -1 ⇔ x(y - 1) - z( y - 1) = -1 ⇔ (y - 1)(x - z) = 1 ⇔ (y - 1)(z - x) = 1. Значит, либо оба множителя равны 1, либо -1, либо один из них целый, а второй - обратный первому. В последнем случае получается, что какое-то из чисел обязательно будет дробным, а это не удовлетворяет условию задачи.
1) y - 1 = -1, z - x = -1 ⇒ y = 0, z = 94, x = 95. z - x = 94 - 95 = -1 - верно, решение (95; 0; 94) подходит.
2) y - 1 = 1, z - x = 1 ⇒ y = 2.
z - x = 32 - 31 = 1 - верно, решение (31; 2; 32) подходит.
ответ: (95; 0; 94), (31; 2; 32)