В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Privet206
Privet206
26.08.2020 10:34 •  Алгебра

7. ) График функции y = (a + 1) + a - 1 пересекает ось абсцисс в точке (2,0). а) обосновать содержание аммония б) записать функцию как ua kx + b c) без построения линейной функции определить, в какой четверти график не проходит​

Показать ответ
Ответ:
gerasiko
gerasiko
31.08.2020 14:19

Исследовать функцию y=-x^4+8x^2-9 и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. Точки пересечения с осями координат: 

Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.

Квадратное уравнение, решаем относительно n: 

Ищем дискриминант:

D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

Дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

Обратная замена: х = √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

 x₃ = √6,645751 = 2,57793,     x₄ = -2,577935.

Получаем 4 точки пересечения с осью Ох:

(1,163722; 0),  (-1,16372; 0),  (2,57793; 0),  (-2,57793; 0).

 x₃ = √6,645751 = 2,57793,

Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

Имеем 3 критические точки: х = 0, х = 2 и х = -2.

Определяем знаки производной вблизи критических точек.

x =   -3       -2      -1      0      1       2       3

y' =   60      0      -12     0     12      0     -60.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

Минимум функции в точке: x = 0.

Максимумы функции в точках:

x = -2.

x = 2.

Убывает на промежутках (-2, 0] U [2, +oo).

Возрастает на промежутках (-oo, -2] U [0, 2).

 6. Вычисление второй производной: y''=-12х² + 16 , 

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции: 

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

Вторая производная  4 \left(- 3 x^{2} + 4\right) = 0.

Решаем это уравнение

Корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)

 8. Искомый график функции в приложении.

Подробнее - на -

Объяснение:

0,0(0 оценок)
Ответ:
LentaKuim
LentaKuim
09.08.2022 10:39
Решение 1)   sin³x*cosx - cos³x*sinx = 1/4  умножим обе части уравнения на   4 4*(sin³x*·cosx - cos³x*sinx) = 1  4*(sin²x*sinx*cosx-cos²x*cosx*sinx) =   1  4*sinx*cosx*(sin²x - cos²x) = 1 - 2*(2*sinx*cosx)*(cos²x - sin²x) = 1 - 2*sin2x*cos2x = 1   - sin4x = 1 sin4x= - 1 4x = - π/2 + 2πk, k∈z x = - π/8 + πk/2, k∈z 2)   2cos²2x + 3sin4x + 4sin²2x = 0 2cos²2x + 3*2*sin2xcos2x    + 4sin²2x = 02cos²2x +6sin2xcos2x    + 4sin²2x = 0делим на cos²2x  ≠ 0 4tg²2x +  6tg2x + 2 = 0  делим на 2 2tg²2x +3 tg2x + 1 = 0  tg2x = t 2t² + 3t + 1 = 0 d = 9 - 4*2*1 = 1 t₁ = (- 3 - 1)/4 = - 1 t₂ = (- 3 + 1)/4 = - 1/2 1)   tg2x = - 1 2x = arctg(-1) +  πk, k  ∈ z 2x = -  π/4  +  πk, k  ∈ z x₁ = -  π/8   +  πk/2, k  ∈ z2) tg2x = - 1/2 2x = arctg(-1/2) +  πn, n  ∈ z x₂ =  - (1/2)*arctg(1/2) +  πn , n  ∈ z 3)   sin(2x + 12π/7) = 2sin(x -  π/7) - sin2x = - 2sinx 2sinxcosx - 2sinx = 0 2sinx(cosx - 1) = 0 1)   sinx = 0 x₁ =  πk, k  ∈ z 2)   cosx - 1 = 0 cosx = 1 x₂ = 2πn, n  ∈ z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота