1) Решаем через сложение:
{3m-2n=5 → {3m-2n+m+2n=5+15
{m+2n=15 → {m+2n=15
Переписываем первое и решаем отдельно:
3m-2n+m+2n=5+15
4m=20
m=5
Зная одно, можем через подставку узнать другое:
m+2n=15
5+2n=15
2n=10
n=5
ответ: m=5, n=5.
2) Из второго вычтем первое:
{a+3b=2 → {a+3b=2
{2a+3b=7 → {2а+3b-a-3b=7-2
Выписываем второе и решаем отдельно:
2а+3b-a-3b=7-2
а=5
Теперь находим первое:
a+3b=2
5+3b=2
3b= -3
b= -1
ответ: b= -1, а=5.
3) Находим k во втором и решаем первое через подставку:
{3k-5p=14 → {3(1-2p)-5p=14
{k+2p=1 → {k=1-2p
Выписываем первое и решаем отдельно:
3(1-2p)-5p=14
3-6p-5p=14
-11p=11
p= -1
Зная первое, найдём второе:
k=1-2p
k=1-2*(-1)
k=1+2
k=3
ответ: p= -1, k=3.
4) Находим в первом d и решаем через подставку:
{2c-d=2 → {2с-2=d
{3c-2d=3 → {3c-2(2c-2)=3
3c-2(2c-2)=3
3с-4с+4=3
-с = -1
с=1
Зная одно, можем найти другое:
2с-2=d
2-2=d
d=0
ответ: с=1, d=0.
1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
1) Решаем через сложение:
{3m-2n=5 → {3m-2n+m+2n=5+15
{m+2n=15 → {m+2n=15
Переписываем первое и решаем отдельно:
3m-2n+m+2n=5+15
4m=20
m=5
Зная одно, можем через подставку узнать другое:
m+2n=15
5+2n=15
2n=10
n=5
ответ: m=5, n=5.
2) Из второго вычтем первое:
{a+3b=2 → {a+3b=2
{2a+3b=7 → {2а+3b-a-3b=7-2
Выписываем второе и решаем отдельно:
2а+3b-a-3b=7-2
а=5
Теперь находим первое:
a+3b=2
5+3b=2
3b= -3
b= -1
ответ: b= -1, а=5.
3) Находим k во втором и решаем первое через подставку:
{3k-5p=14 → {3(1-2p)-5p=14
{k+2p=1 → {k=1-2p
Выписываем первое и решаем отдельно:
3(1-2p)-5p=14
3-6p-5p=14
-11p=11
p= -1
Зная первое, найдём второе:
k=1-2p
k=1-2*(-1)
k=1+2
k=3
ответ: p= -1, k=3.
4) Находим в первом d и решаем через подставку:
{2c-d=2 → {2с-2=d
{3c-2d=3 → {3c-2(2c-2)=3
Выписываем второе и решаем отдельно:
3c-2(2c-2)=3
3с-4с+4=3
-с = -1
с=1
Зная одно, можем найти другое:
2с-2=d
2-2=d
d=0
ответ: с=1, d=0.
1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.