sin^2(альфа)= 1 - cos^2(альфа) - формула.
8 sin^2 2x + cos 2x + 1 = 0
8 (1 - cos^22x) + cos2x + 1=0
8 - 8cos^22x + cos2x + 1 = 0
Приведем подобные и получается
-8cos^22x + cos2x + 9 = 0 / домножим на (-1)
8cos^22x - cos2x - 9 =0
заменим:
cos2x = t
8t^2 - t - 9= 0
D= 289
t1 = -1
t2 = 9/8.
cos2x = -1
2x = П + 2Пn, n принадлежит z (поделим данное выражение на 2)
x = П/2 + Пn
cos2x= 9/8
2x= arccos 9/8 + Пn
решения нет.
ответ: x = П/2 + Пn пиши так и всё
sin^2(альфа)= 1 - cos^2(альфа) - формула.
8 sin^2 2x + cos 2x + 1 = 0
8 (1 - cos^22x) + cos2x + 1=0
8 - 8cos^22x + cos2x + 1 = 0
Приведем подобные и получается
-8cos^22x + cos2x + 9 = 0 / домножим на (-1)
8cos^22x - cos2x - 9 =0
заменим:
cos2x = t
8t^2 - t - 9= 0
D= 289
t1 = -1
t2 = 9/8.
cos2x = -1
2x = П + 2Пn, n принадлежит z (поделим данное выражение на 2)
x = П/2 + Пn
cos2x= 9/8
2x= arccos 9/8 + Пn
решения нет.
ответ: x = П/2 + Пn пиши так и всё