В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
artemumnov2
artemumnov2
31.07.2021 00:59 •  Алгебра

9! даны n точек, никакие четыре из которых не принадлежат одной плоскости. сколько плоскостей можно провести через различные тройки этих точек?

Показать ответ
Ответ:
kopilge
kopilge
19.08.2020 11:29
ответ: (n(n - 1)(n - 2))/6 . 1 точку можно взять п Число прямых, проходящих через них, равно (n(n - 1)/2. 3 точку можно выбрать Тогда число прямых, проходящих через эти три точки, равно (n(n - 1)(n - 2))6, что и определяет наибольшее количество плоскостей, которые можно провести через различные тройки из n точек.
0,0(0 оценок)
Ответ:
какулькаТВ
какулькаТВ
19.08.2020 11:29
Пусть A1,A2,...,An,n- точек, никакие три из которых не лежат на одной прямой. Выясним, сколько прямых проходит через точку A1 и оставшиеся точки. Так как число оставшихся точек равно n – 1 и через каждую из них и точку A1 проходит одна прямая, то число прямых будет равно n – 1. Всего точек n и через каждую из них проходит n – 1 прямая, то число посчитанных прямых будет равно n(n – 1). Каждую прямую посчитали дважды и поэтому число прямых, проходящих через различные пары из n данных точек, равно n(n-1)/2. . Третью точку можно выбрать Тогда число прямых, проходящих через эти три точки,
равно (n(n - 1)(n - 2))/6 .
Или иначе это число сочетаний из n по 3,которое равно
 n!/(n-3)!*3!=n(n-1)(n-2)*(n-3)!/(1*2*3*(n-3)!)=(n(n-1)(n-2)/6
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота