а) Пересекаются ли графики двух линейных функций
у = 0,9х - 1 и у = 0,8х + 1 ?
б) Запишите линейную функцию, график которой пересекает график функции у = -3х – 1.
Постройте графики функций на одном чертеже:
у = 2x у = -x+1 у = 2
все построенные графики необходимо подписать
49х = 4у + 9
35х = 3у + 5
3у=35х-5
3у=5(7х-1)
у=5(7х-1)/3
49х = 4*5(7х-1)/3 + 9
49х=140х-20+27/3
49х*3=140х+7
147х-140х=7
7х=7
х=1
у=5(7*1-1)/3
у=5*6/3
у=5*2
у=105х - 4у = 5 | *(-5)
-25х + 20у = -25
а теперь складываем строки системы уравнений
25х - 18 у = 75
-25х + 20у = -25
0х +2у = 50
т. е. 2у = 50
у = 25
для того чтобы найти х, подставляем полученное значение у в любое уравнение
5х -4*25 = 5
5х - 100 = 5
5х = 5 + 100
5х = 105
х= 105/5
х = 21
ответ
х=21
у=25.
-3u+5v=1.5 домножим обе части уравнения на -3,получаем
9u-15v=4.5
система принимает вид. можем применить метод сложения (аналогично А)
11u+15v=1.9
9u-15v=4.5
2х-3у = -8
х=7-4у2(7-4у) -3у = -8
х=7-4у
14-8у-3у+8=0
х=7-4у
22=11у
х=7-4у
у=2
х=7-8
у=2
х=-1
20v=6.4
v=0.32
1) 2x+y=11 2) 5x-2y+6 3) 3x-2y=30
2x-y=9, 7x+2y=18, x-4y=25, умножаем на (-3)
4x=20, 12x=24, 3x-2y=30
x=5 x=2 -3x+12y= -75,
10y= -45
2y= -9
y= -2/9
Объяснение: