График функции х - y = 7 не проходит через точки С(5;2) и D(8;2).
Объяснение:
График функции х - y = 7 проходит через заданную точку, если при подстановке в уравнение графика функции координат х и у заданной точки получается верное равенство.
Проверяем точку С (5;2).
Её координаты: х = 5, у = 2.
х - у = 5 - 2 = 3
Так как 3 ≠ 7, то это означает, что график функции х - y = 7 не проходит через точку С(5;2).
Проверяем точку D (8;2).
Её координаты: х = 8, у = 2.
х - у = 8 - 2 = 6
6 ≠ 7 - значит, график функции х - y = 7 не проходит через точку D(8;2).
ответ: график функции х - y = 7 не проходит через точки С(5;2) и D(8;2).
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
График функции х - y = 7 не проходит через точки С(5;2) и D(8;2).
Объяснение:
График функции х - y = 7 проходит через заданную точку, если при подстановке в уравнение графика функции координат х и у заданной точки получается верное равенство.
Проверяем точку С (5;2).
Её координаты: х = 5, у = 2.
х - у = 5 - 2 = 3
Так как 3 ≠ 7, то это означает, что график функции х - y = 7 не проходит через точку С(5;2).
Проверяем точку D (8;2).
Её координаты: х = 8, у = 2.
х - у = 8 - 2 = 6
6 ≠ 7 - значит, график функции х - y = 7 не проходит через точку D(8;2).
ответ: график функции х - y = 7 не проходит через точки С(5;2) и D(8;2).
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность: