Объяснение:
1) Учитесь ставить скобки!
y = √2/(2cos x - √3)
Область определения косинуса - R = (-oo; +oo).
Область определения дроби - знаменатель не должен быть равен 0.
2cos x - √3 ≠ 0
cos x ≠ √3/2
x ≠ П/6 + 2П*k
x ≠ -П/6 + 2П*k
Область определения:
D(x) = (-П/6 + 2П*k; П/6 + 2П*k) U (П/6 + 2П*k; 11П/6 + 2П*k)
2) cos(2x + П/3) = 1/2
2x1 + П/3 = -П/3 + 2П*k; x1 = -2П/3 + 2П*k
2x2 + П/3 = П/3 + 2П*k; x2 = П*k
3) cos(2x - П/4) < √2/2
2x - П/4 ∈ (П/4 + 2П*k; 7П/4 + 2П*k)
2x ∈ (П/2 + 2П*k; 2П + 2П*k)
x ∈ (П/4 + П*k; П + П*k)
4) Опять - учитесь ставить скобки!
ответ: sin a
5) Система
{ sin x + cos y = 0,5
{ sin^2 x - cos^2 y = 0,5
Во 2 уравнении раскладываем разность квадратов на скобки.
{ (sin x + cos y)(sin x - cos y) = 0,5
Подставляем 1 уравнение во 2 уравнение
0,5*(sin x - cos y) = 0,5
sin x - cos y = 1
Получаем новую систему
{ sin x - cos y = 1
Складываем уравнения
2sin x = 1,5
sin x = 0,75
x = (-1)^n*arcsin(0,75) + П*k
cos y = 0,5 - sin x = 0,5 - 0,75 = -0,25
y = ± arccos(-0,25) + 2П*k
По теореме Пифагора:
Составим и решим систему уравнений
Из второго уравнения имеем, что . Тогда имеем несколько случаев.
Случай 1. Если , то и подставим в первое уравнение.
Согласно теореме виета см и корень не удовлетворяет заданному условию
см
Случай 2. Если ,то подставив в первое уравнение, получим
Согласно теореме Виета см и корень не удовлетворяет условию
Катеты прямоугольного треугольника равны 35 см и 12 см или 12 см и 35 см.
Периметр прямоугольного треугольника: см
ответ: 84 см.
Объяснение:
1) Учитесь ставить скобки!
y = √2/(2cos x - √3)
Область определения косинуса - R = (-oo; +oo).
Область определения дроби - знаменатель не должен быть равен 0.
2cos x - √3 ≠ 0
cos x ≠ √3/2
x ≠ П/6 + 2П*k
x ≠ -П/6 + 2П*k
Область определения:
D(x) = (-П/6 + 2П*k; П/6 + 2П*k) U (П/6 + 2П*k; 11П/6 + 2П*k)
2) cos(2x + П/3) = 1/2
2x1 + П/3 = -П/3 + 2П*k; x1 = -2П/3 + 2П*k
2x2 + П/3 = П/3 + 2П*k; x2 = П*k
3) cos(2x - П/4) < √2/2
2x - П/4 ∈ (П/4 + 2П*k; 7П/4 + 2П*k)
2x ∈ (П/2 + 2П*k; 2П + 2П*k)
x ∈ (П/4 + П*k; П + П*k)
4) Опять - учитесь ставить скобки!
ответ: sin a
5) Система
{ sin x + cos y = 0,5
{ sin^2 x - cos^2 y = 0,5
Во 2 уравнении раскладываем разность квадратов на скобки.
{ sin x + cos y = 0,5
{ (sin x + cos y)(sin x - cos y) = 0,5
Подставляем 1 уравнение во 2 уравнение
0,5*(sin x - cos y) = 0,5
sin x - cos y = 1
Получаем новую систему
{ sin x + cos y = 0,5
{ sin x - cos y = 1
Складываем уравнения
2sin x = 1,5
sin x = 0,75
x = (-1)^n*arcsin(0,75) + П*k
cos y = 0,5 - sin x = 0,5 - 0,75 = -0,25
y = ± arccos(-0,25) + 2П*k