Пусть х км/ч - скорость второго велосипедиста, тогда (х + 5) км/ч - скорость первого велосипедиста. 50 минут = 50/60 ч = 5/6 ч. Уравнение:
76/х - 76/(х+5) = 5/6
76 · (х + 5) - 76х = 5/6 · х · (х + 5)
76х + 380 - 76х = (5/6)х² + (25/6)х
(5/6)х² + (25/6)х - 380 = 0 | доп. множ. 6
5х² + 25х - 2280 = 0 | делим на 5
х² + 5х - 456 = 0
D = b² - 4ac = 5² - 4 · 1 · (-456) = 25 + 1824 = 1849
√D = √1849 = 43
х₁ = (-5-43)/(2·1) = (-48)/2 = -24 (не подходит, так как < 0)
х₂ = (-5+43)/(2·1) = 38/2 = 19
ответ: 19 км/ч - скорость второго велосипедиста.
Проверка:
76 : 19 = 4 ч - время движения второго велосипедиста
76 : (19 + 5) = 76/24 = 19/6 = 3 1/6 ч - время движения первого велосипедиста
4 - 3 1/6 = 3 6/6 - 3 1/6 = 5/6 ч = 50 мин - разница
Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
Пусть х км/ч - скорость второго велосипедиста, тогда (х + 5) км/ч - скорость первого велосипедиста. 50 минут = 50/60 ч = 5/6 ч. Уравнение:
76/х - 76/(х+5) = 5/6
76 · (х + 5) - 76х = 5/6 · х · (х + 5)
76х + 380 - 76х = (5/6)х² + (25/6)х
(5/6)х² + (25/6)х - 380 = 0 | доп. множ. 6
5х² + 25х - 2280 = 0 | делим на 5
х² + 5х - 456 = 0
D = b² - 4ac = 5² - 4 · 1 · (-456) = 25 + 1824 = 1849
√D = √1849 = 43
х₁ = (-5-43)/(2·1) = (-48)/2 = -24 (не подходит, так как < 0)
х₂ = (-5+43)/(2·1) = 38/2 = 19
ответ: 19 км/ч - скорость второго велосипедиста.
Проверка:
76 : 19 = 4 ч - время движения второго велосипедиста
76 : (19 + 5) = 76/24 = 19/6 = 3 1/6 ч - время движения первого велосипедиста
4 - 3 1/6 = 3 6/6 - 3 1/6 = 5/6 ч = 50 мин - разница
Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
·
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.